

§0.2.1 ERM 模型

@ 滕佳烨

[ref] Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz and Shai Ben-David (2014)

泛化理论

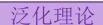
Recall:

Generalization: Measuring how model performs on unseen data.

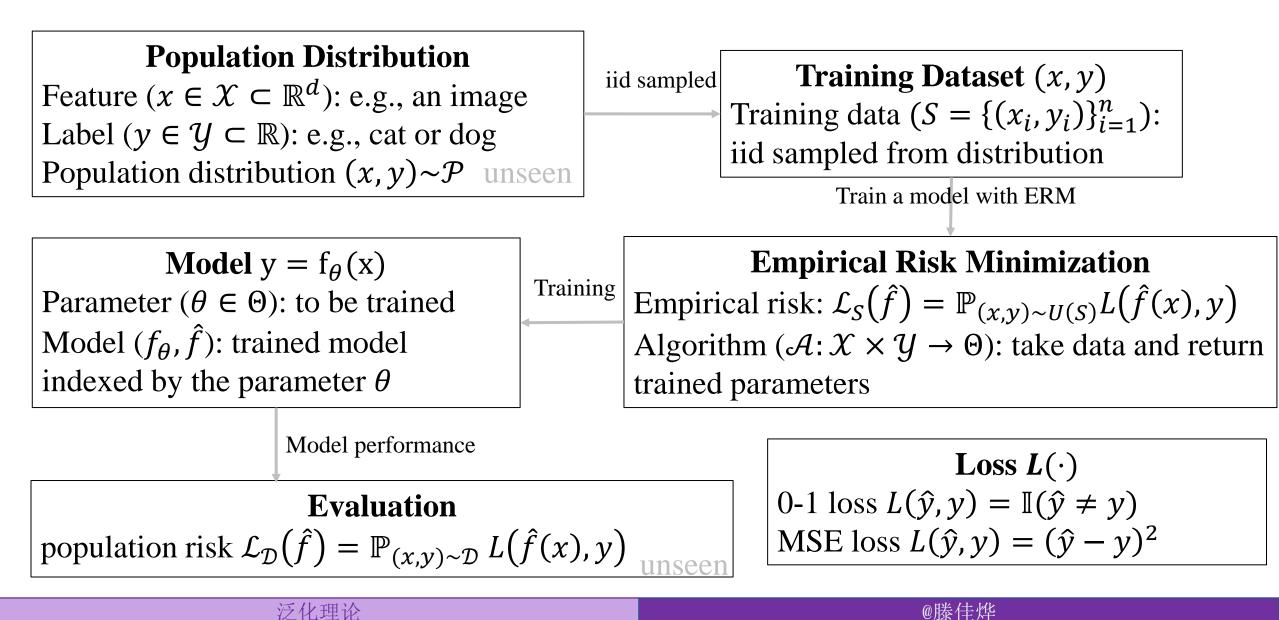
Goal: minimize the **population loss**.

Technique: minimize the **training loss** (since we only have finite training samples).

ERM (empirical risk minimization, informally): train a model to minimize the training loss(, and evaluate it via the test loss).



Formal Definition:



Formal Definition:

Our ultimate goal is to train a model with small test loss (population loss). However, we only train the model on the training set, and attains small training loss. Does the small training loss *generalize* to the test set?

Generalization gap: $\mathcal{L}_{\mathcal{D}}(\hat{f}) - \mathcal{L}_{\mathcal{S}}(\hat{f}) = \mathcal{L}(\hat{f}) - \hat{\mathcal{L}}(\hat{f})$

Note that we have

$$\mathcal{L}(\hat{f}) = \left[\mathcal{L}(\hat{f}) - \hat{\mathcal{L}}(\hat{f})\right] + \hat{\mathcal{L}}(\hat{f})$$

Generalization Gap Optimization

Weakness: when there is label noise, $\mathcal{L}(\hat{f})$ does not converge to 0.

Therefore, either generalization gap or optimization loss does not converge to zero.

Generalization Gap: $\mathcal{L}(\hat{f}) - \hat{\mathcal{L}}(\hat{f})$

Note that we have

$$\mathcal{L}(\hat{f}) = \left[\mathcal{L}(\hat{f}) - \hat{\mathcal{L}}(\hat{f})\right] + \hat{\mathcal{L}}(\hat{f})$$

Generalization Gap Optimization

Weakness: when there is label noise, $\mathcal{L}(\hat{f})$ does not converge to 0. Therefore, either generalization gap or optimization loss does not converge to zero.

For example,

Under-para linear reg: small generalization gap $(\sim d/n)$, large optimization error $(\sim \frac{n-d}{n}\sigma^2)$ Over-para linear reg: large generalization gap $(\geq \sigma^2)$, small optimization error (= 0)

Therefore, generalization research usually rely on realizable assumption $\inf_{f \in \mathcal{F}} \mathcal{L}(f) = 0$, or we need to focus on the excess risk (e.g., benign overfitting).

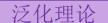
Generalization Gap in Another view: $\mathcal{L}(\hat{f}) - \hat{\mathcal{L}}(\hat{f})$

What we want: small test loss on trained parameter $\hat{\theta}$ compared to the best parameter $\mathcal{L}(\hat{f}) - \inf_{f} \mathcal{L}(f)$

Firstly, under ERM, with good approximation (excess risk)

$$\mathcal{L}(\hat{f}) - \inf_{f} \mathcal{L}(f) = \left(\mathcal{L}(\hat{f}) - \inf_{f \in \mathcal{F}} \mathcal{L}(f)\right) + \left(\inf_{f \in \mathcal{F}} \mathcal{L}(f) - \inf_{f} \mathcal{L}(f)\right)$$
Approximation error

Secondly, with good optimization $\mathcal{L}(\hat{f}) - \inf_{f \in \mathcal{F}} \mathcal{L}(f) = [\mathcal{L}(\hat{f}) - \hat{\mathcal{L}}(\hat{f})] + [\hat{\mathcal{L}}(\hat{f}) - \hat{\mathcal{L}}(f^*)] + [\hat{\mathcal{L}}(f^*) - \mathcal{L}(f^*)]$ Generalization Gap ERM, ≤ 0 Concentration



Take-away messages

- (a) The formal definition of machine learning (notations).
- (b) Relationship between generalization gap and population risk.
- (c) Generalization gap v.s. excess risk (label noise).

泛化理论

All the slides will be available at <u>www.tengjiaye.com/generalization</u>.

@ 滕佳烨

@滕佳烨

Thanks!