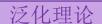
泛化理论 序章 泛化理论简介

§0.3.2 PAC Learning

@ 滕佳烨

[ref] Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz and Shai Ben-David (2014)



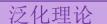
Recall:

No-free-lunch: there is no universal learner!

For any algorithm A, there exists an adversarial distribution D, such that although there exists a good predictor, with high prob, we cannot find it.

Insight: we need some prior knowledge!

How to get the prior knowledge? PAC learning (Provably Approximately Correct)!



PAC learning (Provably Approximately Correct)!

- Probably: for any distribution satisfying the prior,
- Approximately: with small error,
- Correct: we can learn the "best" predictor.

DEFINITION 3.1 (PAC Learnability) A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} and for every labeling function $f : \mathcal{X} \to \{0,1\}$, if the realizable assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq$ $m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability of at least $1 - \delta$ (over the choice of the examples) $L_{(\mathcal{D},f)}(h) \leq \epsilon$.

Recall: realizable: there exists $h \in \mathcal{H}$ such that $L_{(D,f)}(h) = 0$.

Prior knowledge: realizable assumption. The distribution includes those which can be realized by class \mathcal{H} (not all the distribution).

泛化理论

Agnostic PAC learning

DEFINITION 3.3 (Agnostic PAC Learnability) A hypothesis class \mathcal{H} is agnostic PAC learnable if there exist a function $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$ and for every distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, when running the learning algorithm on $m \ge m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} , the algorithm returns a hypothesis h such that, with probability of at least $1 - \delta$ (over the choice of the m training examples),

$$L_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon.$$

No need for "realizable".

What is the prior knowledge under the agnostic PAC? The adaptive loss $\min_{h'} L_D(h')$. Note that this loss corresponds to the function class \mathcal{H} .

@滕佳烨

Take-away messages

泛化理论

(a) PAC learning: introduce the prior knowledge via "realizable" over a function class.(b) Agnostic PAC learning: introducing the prior knowledge via adaptive loss.ALL the algorithms we study later fall into the PAC learning framework...

All the slides will be available at <u>www.tengjiaye.com/generalization</u> soon.

@ 滕佳烨

@滕佳烨

Thanks!