

@ 滕佳烨

[ref] Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz and Shai Ben-David (2014)

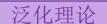
Recall:

No-free-lunch: there is no universal learner! PAC learning (**Provably Approximately Correct**): Introduce the prior knowledge via "realizable" over a function class.

Agnostic PAC learning: introducing the prior knowledge via adaptive loss.

Today's topic:

We will give an example to show how to achieve PAC learnable : finite function class \mathcal{H} is PAC-learnable!



PAC learning

DEFINITION 3.1 (PAC Learnability) A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labeling function $f : \mathcal{X} \to \{0,1\}$, if the realizable assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $\underline{m} \geq \underline{m}_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability of at least $1 - \delta$ (over the choice of the examples), $L_{(\mathcal{D},f)}(h) \leq \epsilon$.

 $m_{\mathcal{H}}(\epsilon, \delta)$: sample complexity. Measure how many samples required to guarantee PAC (minimal). Informally, when $m_{\mathcal{H}}(\epsilon, \delta) < \infty$, we call a function class "PAC learnable".

Example: finite function class is PAC-learnable!

COROLLARY 3.2 Every finite hypothesis class is PAC learnable with sample complexity $\begin{bmatrix} \log(|\mathcal{H}|/\delta) \end{bmatrix}$

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \left| \frac{\log(|\mathcal{H}|/\delta)}{\epsilon} \right|.$$

Hint: for a given **bad** function in \mathcal{H} , it predicts each data point correctly with probability $\leq 1 - \epsilon$. Therefore, for the training set with *m* samples, the training set has zero loss with probability $\leq (1 - \epsilon)^m = e^{m \log(1 - \epsilon)}$. That is to say:

a bad function has small probability to be chosen at the training phase.

@滕佳烨

Using union bound over all the functions, the probability becomes $\leq |\mathcal{H}|e^{m\log(1-\epsilon)} = e^{\log|\mathcal{H}|+m\log(1-\epsilon)}$. To make the probability equal to δ , we requires that $\log |\mathcal{H}| + m\log(1-\epsilon) = \log \delta$, leading to $m = -\frac{\log \frac{|\mathcal{H}|}{\delta}}{\log(1-\epsilon)} \approx \frac{\log \frac{|\mathcal{H}|}{\delta}}{\epsilon}$

Formally, see Page 39 in the reference book.

泛化理论

Take-away messages

(a) Finite function class is PAC-learnable with
$$m_{\mathcal{H}} = \frac{\log \frac{|\mathcal{H}|}{\delta}}{\epsilon}$$
.

All the slides will be available at <u>www.tengjiaye.com/generalization</u> soon.

@ 滕佳烨

Thanks!

