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泛化理论
第一章 传统统计模型

§1.1.1 一致性Consistency

@ 滕佳烨

[ref] Statistical Inference, George Casella and Roger L. Berger.



Recall:

Generalization ℒ መ𝑓 − መℒ( መ𝑓): Measuring how model performs on unseen data.

View 1: small generalization gap (ℒ መ𝑓 − መℒ( መ𝑓)) and small training error ( መℒ( መ𝑓)) leads 

to small population risk.

View 2: small generalization gap leads to small excess risk.

No-free-lunch, PAC, agnostic PAC…

In this section (§1), we mainly analyze the parametric model and study the 

consistency of the estimator. 

• What is consistency? 

• Why we need consistency? 

• How to prove consistency?
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Parametric Model

(Informal) We call a model as parametric model if the learned model (or, the distribution) 

is indexed by a  finite-dimension parameter. 

For example, linear settings, 𝑦|𝑥 ∼ 𝑁(𝑥⊤𝛽∗, 𝜎2) is indexed by 𝛽∗ ∈ ℝ𝑑 (ground truth)

Use the linear classifier (indexed by መ𝛽)

泛化理论 @滕佳烨

If we train the model using the training set and the algorithm returns መ𝛽, when we have 

infinite training samples (𝑛 → ∞), the estimator መ𝛽 should converge to the true 

parameter 𝛽∗.

Consistency



If we train the model using the training set and the algorithm returns መ𝛽, when we have 

infinite training samples (𝑛 → ∞), the estimator መ𝛽 should converge to the true 

parameter 𝛽∗.

Why we need consistency?

When we collect more data points, we expect the model to be *more precise*. 

When we have infinite data points, we expect the model to be *perfect*.

泛化理论 @滕佳烨

Consistency



We take linear regression as an example (with least-square estimator).

Consider the linear regimes 𝑦 = 𝑥⊤𝛽∗ + 𝜖, where 𝜖 ∼ 𝑁(0, 𝜎2). Fixed design regime.

The estimator can be derived as 
መ𝛽 = 𝑋⊤𝑋 −1𝑋⊤𝑌,

where 𝑋 ∈ ℝ𝑛×𝑑 is the design matrix, 𝑌 ∈ ℝ𝑛 is the response vector (n: training samples, 

d: dimension).

[Remark: we usually define 𝑑 as the dimension of x, and 𝑝 as the dimension of parameter. 

In linear regression regimes, 𝑑 = 𝑝.]

Hint: for least-square estimator, 

We want the estimator መ𝛽 helps to map from “x-space” to “y-space”. Therefore, መ𝛽 = 𝑋−1𝑌. 

Since 𝑋 ∈ ℝ𝑛×𝑑, 𝑋−1 denotes its pseudo inverse. 

For a formal script, you can minimize the loss L 𝛽 = 𝑌 − 𝑋𝛽 2.  By taking derivation, 

we have 
𝜕L 𝛽

𝜕𝛽
= 𝑋⊤ 𝑌 − 𝑋𝛽 = 0. 

How to prove consistency?
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The learned parameter:
መ𝛽|𝑋~𝑁(𝛽∗, 𝜎2 𝑋⊤𝑋 −1)

Hint: 𝔼 መ𝛽 𝑋 = 𝑋⊤𝑋 −1𝑋⊤𝔼𝑌 𝑋 = 𝑋⊤𝑋 −1𝑋⊤𝑋𝛽∗ = 𝛽∗; 

𝔻 መ𝛽 𝑋 = 𝑋⊤𝑋 −1𝑋⊤[𝔻𝑌 𝑋]𝑋 𝑋⊤𝑋 −1 = 𝜎2 𝑋⊤𝑋 −1.

Note that 𝑋⊤𝑋 −1 =
1

𝑛

1

𝑛
𝑋⊤𝑋

−1
→

1

𝑛
Σ𝑥
−1 (informally), it converges to zero as 𝑛 → ∞.

Therefore, it is consistent!



Take-away messages

(a) Basic definition on consistency.

(b) With infinite samples, we hope that the estimator converge to the ground truth.

(c) Basic framework about the linear regression. The estimator is consistent.
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Thanks!

@ 滕佳烨

All the slides will be available at www.tengjiaye.com/generalization soon.

http://www.tengjiaye.com/generalization

