

§1.2.1 广义线性模型

@ 滕佳烨

Recall:

Consistency: when we have infinite training samples $(n \rightarrow \infty)$, the estimator $\hat{\beta}$ should converge to the true parameter β^* .

- Basic **linear regression**: $y = x^{T}\beta^{*} + \epsilon$
- LSE (least-square estimator): minimize *MSE* (min square error) $||Y X\beta||^2$ $\hat{\beta} = (X^T X)^{-1} X^T Y, \qquad \hat{\beta} |X \sim N(\beta^*, \sigma^2 (X^T X)^{-1})$
- Variable selection when small signal-to-noise ratio.

Today's topic: Generalized Linear Models (GLM)

Linear Regression

Consider the linear regimes $y = x^{T}\beta^{*} + \epsilon$, where $\epsilon \sim N(0, \sigma^{2})$. Fixed design regime. The estimator can be derived as

 $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y,$

where $X \in \mathbb{R}^{n \times d}$ is the design matrix, $Y \in \mathbb{R}^n$ is the response vector (n: training samples, d: dimension).

In other words, we assume that $y|x \sim N(x^{\top}\beta^*, \sigma^2)$ Strength: simple, easy to estimate and do inference; Weakness: not flexible.

For example, what if we know $y \in \{0, 1\}$? What if we know $y \ge 0$? Obviously, this violates the assumption $y|x \sim N(x^{\top}\beta^*, \sigma^2)$.

Can we use some other assumptions on the distribution y|x while preserving the linear property?

Intuition for Generalized Linear Models (GLM)

For example, if we know that $y \in \{0,1\}$ (binary classification), we can assume that $y|x \sim \text{Bernoulli}(p)$, where $p \in [0,1]$.

[That is to say, y = 1 with probability p, and y = 0 with probability 1 - p.]

How to set *p* with linear predictor $x^{\top}\beta^*$? Since $p \in [0,1]$, we can use $p = \frac{e^{x^{\top}\beta^*}}{1+e^{x^{\top}\beta^*}} \in [0,1]$. Therefore, the total assumption is that:

$$y|x \sim \text{Bernoulli}\left(\frac{e^{x^{\top}\beta^{*}}}{1+e^{x^{\top}\beta^{*}}}\right),$$

We can then calculate its MLE (maximum likelihood estimator), for example, in Bernoulli distribution, we maximize $l(\beta)$ to get estimator $\hat{\beta}$:

$$l(\beta) = \sum_{i} y_{i} \log(\hat{p}) + (1 - y_{i}) \log(1 - \hat{p}) = \sum_{i} y_{i} \log\left(\frac{e^{x_{i}^{\top}\beta}}{1 + e^{x_{i}^{\top}\beta}}\right) + (1 - y_{i}) \log\left(\frac{1}{1 + e^{x_{i}^{\top}\beta}}\right).$$

@滕佳烨

This is so called **Logistic regression**.

But, how to set p?

The Exponential Family

$$p(y;\eta) = b(y) \exp\left(\frac{K(\eta)T(y) - a(\eta)}{k(\eta)}\right)$$

• It is a general family, including Gaussian distribution, Bernoulli distribution, and Poisson distribution ...

For example, for Bernoulli distribution
$$p(y) = p^{y}(1-p)^{1-y}$$
:
 $p(y;p) = \exp\left(y\log\left(\frac{p}{1-p}\right) + \log(1-p)\right).$
Therefore, $K(p) = \log\left(\frac{p}{1-p}\right)$ and $T(y) = y$. Setting $K(p) = x^{T}\beta^{*}$ leads to $p = \frac{e^{x^{T}\beta^{*}}}{1+e^{x^{T}\beta^{*}}}$
That is just what we want!

@滕佳烨

Generalized Linear Models (GLM)

Generally, given a distribution in the exponential family, we can assume that $T(y)|x \sim P(\eta)$ where $K(\eta) = x^{\top}\beta^{*}$.

That is how we set the parameter!

Examples in GLM

$$p(y;\eta) = b(\eta) \exp\left(\frac{K(\eta)T(y) - a(\eta)}{K(\eta)}\right)$$

 $x \sim P(\eta)$ where $K(\eta) = x^{\top}\beta^*$

We assume $T(y)|x \sim P(\eta)$ where $K(\eta) = x^{\mathsf{T}}\beta^*$.

Linear regression

- For Gaussian distribution, $K(\eta) = \eta$ and T(y) = y.
- Therefore, we assume $y|x \sim N(x^{\top}\beta^*, \sigma^2)$

Logistic regression

• For Bernoulli distribution, $K(\eta) = \log(\eta/(1-\eta))$ and T(y) = y.

• Therefore, we assume
$$y|x \sim \text{Ber}\left(\frac{e^{x^{\top}\beta^{*}}}{1+e^{x^{\top}\beta^{*}}}\right)$$

Poisson regression

. . .

- For Poisson distribution, $K(\eta) = \log \eta$ and T(y) = y.
- Therefore, we assume $y|x \sim \text{Poi}(\exp(x^{\top}\beta^*))$

Softmax regression with multinomial distribution.

Take-away messages

- (a) Exponential Family: $p(y;\eta) = b(y) \exp(\frac{K(\eta)T(y) a(\eta)}{k})$.
- (b) Generalized linear models (GLM): assume $T(y)|x \sim P(\eta)$ where $K(\eta) = x^{\top}\beta^*$.
- (c) Some examples: linear regression, logistic regression, Poisson regression ...

All the slides will be available at <u>www.tengjiaye.com/generalization</u> soon.

@ 滕佳烨

Thanks!

