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泛化理论
第一章 传统统计模型

§1.2.1 广义线性模型

@ 滕佳烨



Recall:

Consistency: when we have infinite training samples (𝑛 → ∞), the estimator መ𝛽 should 

converge to the true parameter 𝛽∗.
• Basic linear regression: 𝑦 = 𝑥⊤𝛽∗ + 𝜖
• LSE (least-square estimator): minimize 𝑀𝑆𝐸 (min square error) 𝑌 − 𝑋𝛽 2

መ𝛽 = 𝑋⊤𝑋 −1𝑋⊤𝑌, መ𝛽|𝑋~𝑁(𝛽∗, 𝜎2 𝑋⊤𝑋 −1)
• Variable selection when small signal-to-noise ratio.

Today’s topic:

Generalized Linear Models (GLM)
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Consider the linear regimes 𝑦 = 𝑥⊤𝛽∗ + 𝜖, where 𝜖 ∼ 𝑁(0, 𝜎2). Fixed design regime.

The estimator can be derived as 
መ𝛽 = 𝑋⊤𝑋 −1𝑋⊤𝑌,

where 𝑋 ∈ ℝ𝑛×𝑑 is the design matrix, 𝑌 ∈ ℝ𝑛 is the response vector (n: training samples, 

d: dimension).

Linear Regression
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In other words, we assume that 𝑦|𝑥~𝑁(𝑥⊤𝛽∗, 𝜎2)
Strength: simple, easy to estimate and do inference;

Weakness: not flexible. 

For example, what if we know 𝑦 ∈ {0, 1}? What if we know 𝑦 ≥ 0? Obviously, this 

violates the assumption 𝑦|𝑥~𝑁(𝑥⊤𝛽∗, 𝜎2). 

Can we use some other assumptions on the distribution 𝑦|𝑥 while preserving the linear 

property?



For example, if we know that 𝑦 ∈ {0,1} (binary classification), we can assume that 

𝑦|𝑥~Bernoulli(𝑝), where 𝑝 ∈ [0,1].  
[That is to say, y = 1 with probability 𝑝, and 𝑦 = 0 with probability 1 − 𝑝.]

How to set 𝑝 with linear predictor 𝑥⊤𝛽∗? Since 𝑝 ∈ [0,1], we can use 𝑝 =
𝑒𝑥

⊤𝛽∗

1+𝑒𝑥
⊤𝛽∗

∈ [0,1] .

Therefore, the total assumption is that:

𝑦|𝑥~Bernoulli
𝑒𝑥

⊤𝛽∗

1 + 𝑒𝑥
⊤𝛽∗

,

We can then calculate its MLE (maximum likelihood estimator), for example, in Bernoulli 

distribution, we maximize 𝑙(𝛽) to get estimator መ𝛽:

𝑙 𝛽 =

𝑖

𝑦𝑖 log Ƹ𝑝 + 1 − 𝑦𝑖 log(1 − Ƹ𝑝) =

𝑖

𝑦𝑖 log
𝑒𝑥𝑖

⊤𝛽

1 + 𝑒𝑥𝑖
⊤𝛽

+ 1 − 𝑦𝑖 log
1

1 + 𝑒𝑥𝑖
⊤𝛽

.

This is so called Logistic regression.

But, how to set p?

Intuition for Generalized Linear Models (GLM)
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𝑝 𝑦; 𝜂 = 𝑏 𝑦 exp 𝐾(𝜂)𝑇 𝑦 − 𝑎 𝜂

• It is a general family, including Gaussian distribution, Bernoulli distribution, and 

Poisson distribution …

For example, for Bernoulli distribution 𝑝 𝑦 = 𝑝𝑦 1 − 𝑝 1−𝑦:

𝑝 𝑦; 𝑝 = exp 𝑦 log
𝑝

1 − 𝑝
+ log 1 − 𝑝 .

Therefore, 𝐾 𝑝 = log
𝑝

1−𝑝
and 𝑇 𝑦 = 𝑦. Setting 𝐾 𝑝 = 𝑥⊤𝛽∗ leads to 𝑝 =

𝑒𝑥
⊤𝛽∗

1+𝑒𝑥
⊤𝛽∗

That is just what we want!

The Exponential Family
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Generalized Linear Models (GLM)

Generally, given a distribution in the exponential family, we can assume that 

𝑇(𝑦)|𝑥~𝑃 𝜂 where 𝐾 𝜂 = 𝑥⊤𝛽∗.
That is how we set the parameter!



𝑝 𝑦; 𝜂 = 𝑏 𝜂 exp 𝐾(𝜂)𝑇 𝑦 − 𝑎 𝜂

We assume 𝑇(𝑦)|𝑥~𝑃 𝜂 where 𝐾 𝜂 = 𝑥⊤𝛽∗.

Linear regression

• For Gaussian distribution, 𝐾(𝜂) = 𝜂 and 𝑇 𝑦 = 𝑦. 

• Therefore, we assume 𝑦|𝑥~𝑁(𝑥⊤𝛽∗, 𝜎2)
Logistic regression

• For Bernoulli distribution, 𝐾(𝜂) = log(𝜂/(1 − 𝜂)) and 𝑇 𝑦 = 𝑦. 

• Therefore, we assume 𝑦|𝑥~Ber
𝑒𝑥

⊤𝛽∗

1+𝑒𝑥
⊤𝛽∗

Poisson regression

• For Poisson distribution, 𝐾 𝜂 = log 𝜂 and 𝑇 𝑦 = 𝑦.

• Therefore, we assume 𝑦|𝑥~Poi exp 𝑥⊤𝛽∗

Softmax regression with multinomial distribution. 

…

Examples in GLM
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Take-away messages

(a) Exponential Family: 𝑝 𝑦; 𝜂 = 𝑏 𝑦 exp 𝐾(𝜂)𝑇 𝑦 − 𝑎 𝜂 .

(b) Generalized linear models (GLM): assume 𝑇(𝑦)|𝑥~𝑃 𝜂 where 𝐾 𝜂 = 𝑥⊤𝛽∗.
(c) Some examples: linear regression, logistic regression, Poisson regression …
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Thanks!

@ 滕佳烨

All the slides will be available at www.tengjiaye.com/generalization soon.

http://www.tengjiaye.com/generalization
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