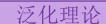


§2.2.1 VC dimension

@ 滕佳烨

[ref] Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz and Shai Ben-David (2014) [ref] High-Dimensional Probability: An Introduction with Applications in Data Science, Roman Vershynin (2020).



Recall:

Uniform convergence: Decouple the dependency via "sup" over function class. $L(\hat{f}) - \hat{L}(\hat{f}) \leq \sup_{f \in \mathcal{F}} |L(f) - \hat{L}(f)| \coloneqq UC(\mathcal{F}).$

Today's topic: **VC dimension:** measures the complexity of the function class \mathcal{F} .

Note that $UC(\mathcal{F})$ is closely related to \mathcal{F} 's *complexity*. For example, if $\mathcal{F} \subset \mathcal{G}$ (\mathcal{G} is more complex than \mathcal{F}), then $UC(\mathcal{F}) \leq UC(\mathcal{G})$.

As we will show, VC dimension also measures the \mathcal{F} 's *complexity*. Therefore, it is natural to bound UC(\mathcal{F}) using VC dimension...

VC dimension

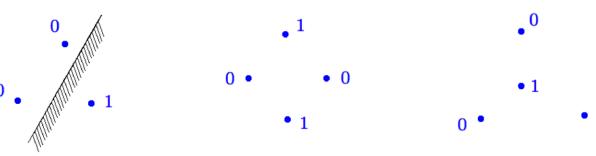
Definition (VC dimension): Consider a class \mathcal{F} of Boolean functions on some domain Ω . We say that a subset $\Lambda \subset \Omega$ is *shattered* by \mathcal{F} if *any* function $g: \Lambda \to \{0, 1\}$ can be obtained by restricting some function $f \in \mathcal{F}$ onto Λ . The VC dimension of \mathcal{F} , denoted $vc(\mathcal{F})$, is the *largest* cardinality of a subset $\Lambda \subset \Omega$ shattered by \mathcal{F} .

Key point: how much points *can* the function class \mathcal{F} *completely* fit? can: there exist such a subset Λ

completely: for any labeling process (any g), there exist $f \in \mathcal{F}$ to fit it.

For example, a linear 2-d classifier class \mathcal{F}_2 has VC dim = 3 (see the following figure). When there are three points, there always exist a line to separate it (as long as the three points are not in a line).

When there are four points, \mathcal{F}_2 cannot fit it no matter how to set the four points. Therefore, VC(\mathcal{F}_2) = 3.



@滕佳烨

VC dimension and generalization (we will prove it in the later class)

Theorem 8.3.23 (Empirical processes via VC dimension). Let \mathcal{F} be a class of Boolean functions on a probability space (Ω, Σ, μ) with finite VC dimension $vc(\mathcal{F}) \geq 1$. Let X, X_1, X_2, \ldots, X_n be independent random points in Ω distributed according to the law μ . Then

$$\mathbb{E}\sup_{f\in\mathcal{F}} \left|\frac{1}{n}\sum_{i=1}^{n} f(X_i) - \mathbb{E}f(X)\right| \le C\sqrt{\frac{\operatorname{vc}(\mathcal{F})}{n}}.$$
(8.29)

@滕佳烨

Connection to generalization:

Set $f(X_i)$ as the loss function $l(X_i, Y_i)$, e.g., 0-1 loss. We have that:

uniform
convergence

$$\mathbb{E}L(\hat{f}) - \hat{L}(\hat{f}) \leq \mathbb{E} \sup_{f \in \mathcal{F}} |L(f) - \hat{L}(f)| = \mathbb{E} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} (f(X_i) - \mathbb{E}f(X_i)) \right| \leq C \sqrt{\frac{\nu c(\mathcal{F})}{n}}$$
Generalization Gap

Take-away messages

泛化理论

(a) VC dimension and shattering: measuring the complexity of function class *F*.
(b) how much points *can* the function class *F completely* fit? Exist a pattern of points, *F* fit all the possible labels.
(a) VC dimension and generalization: √*vc/n*.

All the slides will be available at <u>www.tengjiaye.com/generalization</u> soon.

@ 滕佳烨

@滕佳烨

Thanks!