泛化理论

第三章 Stability

§3.1.1 Stability-based Bound

@ 滕佳烨

[ref] Bousquet, O., & Elisseeff, A. (2002). Stability and generalization. *The Journal of Machine Learning Research*, 2, 499-526.

[ref] Hardt, M., Recht, B., & Singer, Y. (2016, June). Train faster, generalize better: Stability of stochastic gradient descent. In *International conference on machine learning* (pp. 1225-1234). PMLR.

泛化理论

Recall:

Uniform Convergence: $L(\hat{f}) - \hat{L}(\hat{f}) \le \sup_{f \in \mathcal{F}} |L(f) - \hat{L}(f)|$.

Bad news: not algorithm-dependent; a loose bound...

Today's topic:

algorithmic stability: another approach to generalization

泛化理论

@滕佳烨

Algorithmic Stability

Intuition on stability: similar datasets return similar models

€-Uniform-stability (not the unique definition):

If $\mathcal{D} = \{z_1, \dots, z_n\}$ and $\mathcal{D}' = \{z_1', \dots, z_n\}$ differs with only one sample, and the algorithm \mathcal{A} satisfies:

$$\sup_{z} \mathbb{E}_{\mathcal{A}}[\ell(\mathcal{A}(\mathcal{D});z) - \ell(\mathcal{A}(\mathcal{D}');z)] \leq \epsilon,$$

then the algorithm is stable.

Note: the algorithm takes dataset as input and returns estimated parameter (or, model).

- 1. Sup on z: for any testing point \rightarrow uniform
- 2. Expectation on $\mathcal{A} \rightarrow$ random initialization, random operation ...
- 3. "similar" dataset \rightarrow the dataset has only one different example
- 4. "similar" model \rightarrow the model has similar *loss* on any testing point

Stability and Generalization

One sentence: algorithmic stability leads to generalization bound

Theorem (stability and generalization). If the algorithm \mathcal{A} is ϵ -Uniform-stable, its expected generalization gap (on parameter $\hat{\beta} = \mathcal{A}(D)$) satisfies $\mathbb{E}_{D.\mathcal{A}}\mathbb{E}_L[L(\hat{\beta}) - \hat{L}(\hat{\beta})] \leq \epsilon,$

where \mathbb{E}_L denotes the expectation on testing point, and \mathbb{E}_D denotes the expectation on training samples.

Note that different from previous analysis, here we use expectation form \mathbb{E}_D instead of the high probability bound (with high probability, $\mathbb{E}_L[L(\hat{\beta}) - \hat{L}(\hat{\beta})] \leq \epsilon$). We will talk about this in the following sections.

The proof will be shown in 3.1.2.

Take-away messages

- (a) Algorithmic stability: similar dataset returns similar models
- (b) Stability implies generalization (ϵ -uniform-stability)

$$\mathbb{E}_{D,\mathcal{A}}\mathbb{E}_{L}[L(\hat{\beta}) - \hat{L}(\hat{\beta})] \leq \epsilon,$$

All the slides will be available at www.tengjiaye.com/generalization soon.

@ 滕佳烨

Thanks!