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34. 1. 2 PAC-Bayesian Bound
(proof)
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[ref] McAllester, D. A. (1999, July). PAC-Bayesian model averaging. In Proceedings of the twelfth annual conference
on Computational learning theory (pp. 164-170).
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Recall:

Theorem (PAC-Bayesian). Given prior distribution P, for bounded loss £ € [0,1],
with probability at least 1 — & (prob over training), for all posterior distribution Q,

KL(Q|IP) +log 55)

Lp(Q) — Ls(Q) < \

2(n—1)

Today’s topic:
Its proof.

Key idea: change the distribution from Q to P.
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Theorem (PAC-Bayesian). Given prior distribution P, for bounded loss £ € [0,1],
with probability at least 1 — & (prob over training), for all posterior distribution Q,

KL(QIP) +log 55)
\ Z(n— 1) .

Lp(Q) — Ls(Q) <

The core of the proof is still “decouple”.
Denote generalization gap for h by A(h) = Lp(h) — Lg(h). We want to bound E,A(h).
However, we can only bound EpA(h) since P is independent of the training.

How to transfer from the distribution P to Q? KL— similar idea in optimal transport.

Epf(x) = | f()p(x)dx = | f(x) E 361( e = Fofx )pEx;

Not good? Recall KL(Q[|P) = E, logggg Where is the log? Jensen’s inequality!

p(x ) p(x)
q(x)

logEpf(x) =logEqf(x) —= = Eqlog f (x) ——= = Eq log f (x) — KL(Q||P).

q(x) —
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Theorem (PAC-Bayesian). Given prior distribution P, for bounded loss £ € [0,1],
with probability at least 1 — & (prob over training), for all posterior distribution Q,

KL(QIP) +log 55)

Lp(Q) — Ls(Q) <

Goal: bound the term E,A(h), where A(h) = Lp(h) — Lg(h).

log Epf (x) = log IEQf<x)pE ; > Eq log f (x )pﬁ % = Eq log f (x) — KL(Q|IP).

Setting log f (x) as cA(h)?, where c is a constant to be determined,
log Ep exp(cA(h)?) = cE,A(R)? — KL(Q||P).
We next consider the bound for Ep exp(cA(h)z), which is easier since P Is independent.

However, note that we need the bound hold for any distribution Q, therefore, we need sup:
sup cA(h)? — KL(Q||P) <7
Q
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Theorem (PAC-Bayesian). Given prior distribution P, for bounded loss £ € [0,1],
with probability at least 1 — & (prob over training), for all posterior distribution Q,

KL(QIP) +log 55)

Lp(Q) — Ls(Q) <

Goal: bound the term E,A(h), where A(h) = Lp(h) — Lg(h).
log Ep exp(cA(h)Z) > cEqA(h)? — KL(Q||P).
- Let f(S) = sup cEgA(h)? — KL(Q||P), then Eg exp(f(S)) < EgEp exp(cA(h)?)
Q

where the RHS is independent of @ (so we can take sup).
- Due to Hoeffding inequality, with prob (over P) at most exp(—2nt?), A(h) > t.
- Plug it into the above equation, we can derive that Eg exp(f(S)) < ch_c (if c < 2n).

where we use EX < | P(X > t)dt (note that ¢ > 1 when X = exp(cA(h)?)).
- Therefore, by choosing ¢ = 2(n — 1), we have that E¢ exp(f(S)) < n.
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Theorem (PAC-Bayesian). Given prior distribution P, for bounded loss £ € [0,1],
with probability at least 1 — & (prob over training), for all posterior distribution Q,

Lp(Q) — Ls(Q) <

KL(QIP) +log 55)

\

2(n—1)

Goal: bound the term E,A(h), where A(h) = Lp(h) — Lg(h).
log Ep exp(cA(h)Z) > CIEIQA(h)2 — KL(Q||P).
f(S) = sup 2(n — 1)E,A(h)? — KL(Q||P), Es exp(f(S)) < n.
Q

Therefore, by Markov inequality, P(f(S) = u) < %. By setting u = log=, we have for

any Q, with probability at least 1 — 6,

2(n — DEGAR)? — KL(Q|IP) < £(S) < logg.

2
We finish the proof by equation (IEQA(h)) < EyA(h)?.
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Take-away messages

Theorem (PAC-Bayesian). Given prior distribution P(h) and posterior Q (h), for
bounded loss ¢ € [0,1], with probability at least 1 — & (prob over training),

KL(Q|IP) +log ()
\ Z(Tl— 1) .

Lp(Q) — Ls(Q) <

Proof sketch:

(1) Go from distribution P to distribution Q, which causes loss KL(Q||P).

(2) Sup over Q; expectation over P (concentration inequality)

(3) Does logn comes from the sup term?

Note: from the derivation we can see, PAC-Bayesian still need a sup operator on the
distribution Q, and therefore similar to uniform convergence.

. _ _ ) . @ JERfEME
All the slides will be available at www.tengjiaye.com/generalization soon.

Thanks!
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