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泛化理论
第四章 PAC-Bayesian

§4.1.2 PAC-Bayesian Bound 
(proof)

@ 滕佳烨

[ref] McAllester, D. A. (1999, July). PAC-Bayesian model averaging. In Proceedings of the twelfth annual conference 

on Computational learning theory (pp. 164-170).



Recall:

Theorem (PAC-Bayesian). Given prior distribution 𝑃, for bounded loss ℓ ∈ [0,1], 
with probability at least 1 − 𝛿 (prob over training), for all posterior distribution 𝑄,

𝐿𝐷 𝑄 − 𝐿𝑆 𝑄 ≤
𝐾𝐿(𝑄| 𝑃 + log

𝑛
𝛿

2(𝑛 − 1)
.

Today’s topic:

Its proof.

Key idea: change the distribution from Q to P.
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The core of the proof is still “decouple”.

Denote generalization gap for h by Δ ℎ = 𝐿𝐷 h − 𝐿𝑆 ℎ . We want to bound 𝔼𝑄Δ ℎ .

However, we can only bound 𝔼𝑃Δ ℎ since 𝑃 is independent of the training.

How to transfer from the distribution P to Q? KL→ similar idea in optimal transport. 

𝔼𝑃𝑓 𝑥 = ∫ 𝑓 𝑥 𝑝 𝑥 𝑑𝑥 = ∫ 𝑓 𝑥
𝑝 𝑥

𝑞 𝑥
𝑞 𝑥 𝑑𝑥 = 𝔼𝑄𝑓 𝑥

𝑝 𝑥

𝑞 𝑥
.

Not good? Recall 𝐾𝐿(𝑄||𝑃) = 𝔼𝑄 log
𝑞 𝑥

𝑝 𝑥
. Where is the log? Jensen’s inequality!

log 𝔼𝑃𝑓 𝑥 = log 𝔼𝑄𝑓 𝑥
𝑝 𝑥

𝑞 𝑥
≥ 𝔼𝑄 log 𝑓 𝑥

𝑝 𝑥

𝑞 𝑥
= 𝔼𝑄 log 𝑓 𝑥 − 𝐾𝐿(𝑄| 𝑃 .
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Goal: bound the term 𝔼𝑄Δ ℎ , where Δ ℎ = 𝐿𝐷 h − 𝐿𝑆 ℎ .

log 𝔼𝑃𝑓 𝑥 = log 𝔼𝑄𝑓 𝑥
𝑝 𝑥

𝑞 𝑥
≥ 𝔼𝑄 log 𝑓 𝑥

𝑝 𝑥

𝑞 𝑥
= 𝔼𝑄 log 𝑓 𝑥 − 𝐾𝐿(𝑄| 𝑃 .

Setting log 𝑓(𝑥) as cΔ ℎ 2, where 𝑐 is a constant to be determined, 

log 𝔼𝑃 exp 𝑐Δ ℎ 2 ≥ 𝑐𝔼𝑄Δ ℎ 2 − 𝐾𝐿(𝑄| 𝑃 .

We next consider the bound for 𝔼𝑃 exp 𝑐Δ ℎ 2 , which is easier since 𝑃 is independent.

However, note that we need the bound hold for 𝑎𝑛𝑦 distribution Q, therefore, we need sup:

sup
𝑄

cΔ ℎ 2 − 𝐾𝐿(𝑄||𝑃) ≤ ?
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Goal: bound the term 𝔼𝑄Δ ℎ , where Δ ℎ = 𝐿𝐷 h − 𝐿𝑆 ℎ .

log 𝔼𝑃 exp 𝑐Δ ℎ 2 ≥ 𝑐𝔼𝑄Δ ℎ 2 − 𝐾𝐿(𝑄| 𝑃 .

- Let f(S) = sup
𝑄

c𝔼𝑄Δ ℎ 2 − 𝐾𝐿(𝑄||𝑃), then 𝔼𝑆 exp 𝑓 𝑆 ≤ 𝔼𝑆𝔼𝑃 exp 𝑐Δ ℎ 2

where the RHS is independent of 𝑄 (so we can take sup).

- Due to Hoeffding inequality, with prob (over 𝑃) at most exp(−2n𝑡2), Δ ℎ ≥ 𝑡.

- Plug it into the above equation, we can derive that 𝔼𝑆 exp 𝑓 𝑆 ≤
𝑐

2𝑛−𝑐
(if 𝑐 < 2𝑛). 

where we use 𝔼𝑋 ≤ ∫ 𝑃 𝑋 ≥ 𝑡 𝑑𝑡 (note that 𝑡 > 1 when 𝑋 = exp 𝑐Δ ℎ 2 ).

- Therefore, by choosing 𝑐 = 2(𝑛 − 1), we have that 𝔼𝑆 exp 𝑓 𝑆 ≤ 𝑛.
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Goal: bound the term 𝔼𝑄Δ ℎ , where Δ ℎ = 𝐿𝐷 h − 𝐿𝑆 ℎ .

log 𝔼𝑃 exp 𝑐Δ ℎ 2 ≥ 𝑐𝔼𝑄Δ ℎ 2 − 𝐾𝐿(𝑄| 𝑃 .

f S = sup
𝑄

2(n − 1)𝔼𝑄Δ ℎ 2 − 𝐾𝐿(𝑄||𝑃) , 𝔼𝑆 exp 𝑓 𝑆 ≤ 𝑛.

Therefore, by Markov inequality, ℙ 𝑓 𝑆 ≥ 𝑢 ≤
𝑛

exp 𝑢
. By setting 𝑢 = log

𝑛

𝛿
, we have for 

any 𝑄, with probability at least 1 − 𝛿,

2(n − 1)𝔼𝑄Δ ℎ 2 − 𝐾𝐿(𝑄| 𝑃 ≤ 𝑓 𝑆 ≤ log
𝑛

𝛿
.

We finish the proof by equation 𝔼𝑄Δ ℎ
2
≤ 𝔼𝑄Δ ℎ 2.



Take-away messages

Theorem (PAC-Bayesian). Given prior distribution 𝑃 ℎ and posterior 𝑄(ℎ), for 

bounded loss ℓ ∈ [0,1], with probability at least 1 − 𝛿 (prob over training),

𝐿𝐷 𝑄 − 𝐿𝑆 𝑄 ≤
𝐾𝐿(𝑄| 𝑃 + log

𝑛
𝛿

2 𝑛 − 1
.

Proof sketch: 

(1) Go from distribution 𝑃 to distribution 𝑄, which causes loss 𝐾𝐿(𝑄||𝑃).
(2) Sup over Q; expectation over P (concentration inequality)

(3) Does log 𝑛 comes from the sup term?

Note: from the derivation we can see, PAC-Bayesian still need a sup operator on the 

distribution Q, and therefore similar to uniform convergence. 
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Thanks!

@ 滕佳烨
All the slides will be available at www.tengjiaye.com/generalization soon.

http://www.tengjiaye.com/generalization

