泛化理论
 第四章 PAC－Bayesian
 §4．1．2 PAC－Bayesian Bound （proof）

［ref］McAllester，D．A．（1999，July）．PAC－Bayesian model averaging．In Proceedings of the twelfth annual conference on Computational learning theory（pp．164－170）．

Recall：

Theorem（PAC－Bayesian）．Given prior distribution P ，for bounded loss $\ell \in[0,1]$ ， with probability at least $1-\delta$（prob over training），for all posterior distribution Q ，

$$
L_{D}(Q)-L_{S}(Q) \leq \sqrt{\frac{K L(Q \| P)+\log \left(\frac{n}{\delta}\right)}{2(n-1)}}
$$

Today＇s topic：

Its proof．
Key idea：change the distribution from Q to P ．

Theorem（PAC－Bayesian）．Given prior distribution P ，for bounded loss $\ell \in[0,1]$ ， with probability at least $1-\delta$（prob over training），for all posterior distribution Q ，

$$
L_{D}(Q)-L_{S}(Q) \leq \sqrt{\frac{K L(Q \| P)+\log \left(\frac{n}{\delta}\right)}{2(n-1)}}
$$

The core of the proof is still＂decouple＂．

Denote generalization gap for h by $\Delta(h)=L_{D}(\mathrm{~h})-L_{S}(h)$ ．We want to bound $\mathbb{E}_{Q} \Delta(h)$ ．
However，we can only bound $\mathbb{E}_{P} \Delta(h)$ since P is independent of the training．
How to transfer from the distribution P to Q ？ $\mathrm{KL} \rightarrow$ similar idea in optimal transport．

$$
\mathbb{E}_{P} f(x)=\int f(x) p(x) d x=\int f(x) \frac{p(x)}{q(x)} q(x) d x=\mathbb{E}_{Q} f(x) \frac{p(x)}{q(x)}
$$

Not good？Recall $K L(Q \| P)=\mathbb{E}_{Q} \log \frac{q(x)}{p(x)}$ ．Where is the \log ？Jensen＇s inequality！

$$
\log \mathbb{E}_{P} f(x)=\log \mathbb{E}_{Q} f(x) \frac{p(x)}{q(x)} \geq \mathbb{E}_{Q} \log f(x) \frac{p(x)}{q(x)}=\mathbb{E}_{Q} \log f(x)-K L(Q \| P)
$$

Theorem（PAC－Bayesian）．Given prior distribution P ，for bounded loss $\ell \in[0,1]$ ， with probability at least $1-\delta$（prob over training），for all posterior distribution Q ，

$$
L_{D}(Q)-L_{S}(Q) \leq \sqrt{\frac{K L(Q \| P)+\log \left(\frac{n}{\delta}\right)}{2(n-1)}}
$$

Goal：bound the term $\mathbb{E}_{Q} \Delta(h)$ ，where $\Delta(h)=L_{D}(\mathrm{~h})-L_{S}(h)$ ．

$$
\log \mathbb{E}_{P} f(x)=\log \mathbb{E}_{Q} f(x) \frac{p(x)}{q(x)} \geq \mathbb{E}_{Q} \log f(x) \frac{p(x)}{q(x)}=\mathbb{E}_{Q} \log f(x)-K L(Q \| P)
$$

Setting $\log f(x)$ as $c \Delta(h)^{2}$ ，where c is a constant to be determined，

$$
\log \mathbb{E}_{P} \exp \left(c \Delta(h)^{2}\right) \geq c \mathbb{E}_{Q} \Delta(h)^{2}-K L(Q \| P)
$$

We next consider the bound for $\mathbb{E}_{P} \exp \left(c \Delta(h)^{2}\right)$ ，which is easier since P is independent． However，note that we need the bound hold for any distribution Q ，therefore，we need sup：

$$
\sup _{Q} \mathrm{c} \Delta(h)^{2}-K L(Q \| P) \leq ?
$$

Theorem（PAC－Bayesian）．Given prior distribution P ，for bounded loss $\ell \in[0,1]$ ， with probability at least $1-\delta$（prob over training），for all posterior distribution Q ，

$$
L_{D}(Q)-L_{S}(Q) \leq \sqrt{\frac{K L(Q \| P)+\log \left(\frac{n}{\delta}\right)}{2(n-1)}}
$$

Goal：bound the term $\mathbb{E}_{Q} \Delta(h)$ ，where $\Delta(h)=L_{D}(\mathrm{~h})-L_{S}(h)$ ．

$$
\log \mathbb{E}_{P} \exp \left(c \Delta(h)^{2}\right) \geq c \mathbb{E}_{Q} \Delta(h)^{2}-K L(Q \| P)
$$

- Let $\mathrm{f}(\mathrm{S})=\sup _{Q} \mathbb{E}_{Q} \Delta(h)^{2}-K L(Q \| P)$ ，then $\mathbb{E}_{S} \exp (f(S)) \leq \mathbb{E}_{S} \mathbb{E}_{P} \exp \left(c \Delta(h)^{2}\right)$
where the RHS is independent of Q（so we can take sup）．
－Due to Hoeffding inequality，with prob（over P ）at most $\exp \left(-2 \mathrm{n} t^{2}\right), \Delta(h) \geq t$ ．
－Plug it into the above equation，we can derive that $\mathbb{E}_{S} \exp (f(S)) \leq \frac{c}{2 n-c}$（if $c<2 n$ ）．
where we use $\mathbb{E} X \leq \int P(X \geq t) d t$（note that $t>1$ when $X=\exp \left(c \Delta(h)^{2}\right)$ ）．
－Therefore，by choosing $c=2(n-1)$ ，we have that $\mathbb{E}_{S} \exp (f(S)) \leq n$ ．

Theorem（PAC－Bayesian）．Given prior distribution P ，for bounded loss $\ell \in[0,1]$ ， with probability at least $1-\delta$（prob over training），for all posterior distribution Q ，

$$
L_{D}(Q)-L_{S}(Q) \leq \sqrt{\frac{K L(Q \| P)+\log \left(\frac{n}{\delta}\right)}{2(n-1)}}
$$

Goal：bound the term $\mathbb{E}_{Q} \Delta(h)$ ，where $\Delta(h)=L_{D}(\mathrm{~h})-L_{S}(h)$ ．

$$
\begin{gathered}
\log \mathbb{E}_{P} \exp \left(c \Delta(h)^{2}\right) \geq c \mathbb{E}_{Q} \Delta(h)^{2}-K L(Q \| P) \\
\mathrm{f}(\mathrm{~S})=\sup _{Q} 2(\mathrm{n}-1) \mathbb{E}_{Q} \Delta(h)^{2}-K L(Q \| P), \mathbb{E}_{S} \exp (f(S)) \leq n
\end{gathered}
$$

Therefore，by Markov inequality， $\mathbb{P}(f(S) \geq u) \leq \frac{n}{\exp u}$ ．By setting $u=\log \frac{n}{\delta}$ ，we have for any Q ，with probability at least $1-\delta$ ，

$$
2(\mathrm{n}-1) \mathbb{E}_{Q} \Delta(h)^{2}-K L(Q \| P) \leq f(S) \leq \log \frac{n}{\delta}
$$

We finish the proof by equation $\left(\mathbb{E}_{Q} \Delta(h)\right)^{2} \leq \mathbb{E}_{Q} \Delta(h)^{2}$ ．

Take－away messages

Theorem（PAC－Bayesian）．Given prior distribution $P(h)$ and posterior $Q(h)$ ，for bounded loss $\ell \in[0,1]$ ，with probability at least $1-\delta$（prob over training），

$$
L_{D}(Q)-L_{S}(Q) \leq \sqrt{\frac{K L(Q \| P)+\log \left(\frac{n}{\delta}\right)}{2(n-1)}}
$$

Proof sketch：

（1）Go from distribution P to distribution Q ，which causes loss $K L(Q \| P)$ ．
（2）Sup over Q；expectation over P（concentration inequality）
（3）Does $\log n$ comes from the sup term？
Note：from the derivation we can see，PAC－Bayesian still need a sup operator on the distribution Q ，and therefore similar to uniform convergence．

All the slides will be available at www．tengiaye．com／generalization soon．

Thanks！

