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第五章 Information-based Bound

§5.1.1 Information-based Bound
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Recall:

Uniform Convergence: 𝐿 መ𝑓 − 𝐿 መ𝑓 ≤ sup
𝑓∈ℱ

𝐿 𝑓 − 𝐿 𝑓 .

Stability-based bound: similar dataset returns similar models

PAC-Bayesian bound: Bayesian training (parameter following a distribution), 

𝐾𝐿(𝑃| 𝑄

𝑛
(P: prior distribution, Q: posterior distribution)

Today’s topic:

Information-based bound: another approach to generalization (measuring the 

dependency)
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Information-based bound

One sentence: bound the generalization directly using its mutual information.
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Similar to PAC-Bayes, we still consider stochastic parameter.

We want to bound the generalization gap

𝔼ℓ ҧ𝑆,𝑊(𝑆) − 𝔼ℓ 𝑆,𝑊 𝑆 .

A direct intuition: when 𝑊(𝑆) has large dependency on 𝑆, the gap might be large.

But how to measure the dependency?  → mutual information

Mutual Information:

For random variable 𝑋 and 𝑌, we define its mutual information as

𝐼 𝑋, 𝑌 = 𝐸𝑋𝑌 log
𝑝 𝑥, 𝑦

𝑝 𝑥 𝑝(𝑦)
,

where 𝐼 𝑋, 𝑌 = 0 if 𝑋 ind 𝑌.



One sentence: if W(S) and S has small mutual information, the bound is better.

Theorem (Mutual Information). Suppose the loss function ℓ(𝑤, 𝑧) is 𝜎-subGaussian

for all 𝑤 (where the probability is on sample z), then 

𝔼ℓ ҧ𝑆,𝑊(𝑆) − 𝔼ℓ 𝑆,𝑊 𝑆 ≤
2𝜎2

𝑛
𝐼 𝑆,𝑊 𝑆 .

Remark: Different paper may use different information form. Here we use the version 

in Xu & Raginsky (2017) with the mutual information between the training set and the 

trained parameter.

The bound is still 𝑛 convergence rate. 

Information-based bound
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Theorem (Mutual Information). Suppose the loss function ℓ(𝑤, 𝑧) is 𝜎-subGaussian

for all 𝑤 (where the probability is on sample z), then 

𝔼ℓ ҧ𝑆,𝑊(𝑆) − 𝔼ℓ 𝑆,𝑊 𝑆 ≤
2𝜎2

𝑛
𝐼 𝑆,𝑊 𝑆 .

Information-based bound (proof)
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Lemma: for random variable 𝑋, 𝑌 ~𝑃𝑋 × 𝑃𝑌|𝑋 with independent copy ෨𝑋, ෨𝑌 ~𝑃 ෨𝑋 ×

𝑃 ෨𝑌, where 𝑃𝑋 = 𝑃 ෨𝑋 and 𝑃𝑌 = 𝑃 ෨𝑌, if 𝑓 ෨𝑋, ෨𝑌 is subGaussian, we have

𝔼𝑓 𝑋, 𝑌 − 𝔼𝑓 ෨𝑋, ෨𝑌 ≤ 2𝜎2𝐼 𝑋, 𝑌 .

Therefore, by setting 𝑓 ෨𝑋, ෨𝑌 as the test loss ℓ ҧ𝑆,𝑊(𝑆) , it is 𝜎/ 𝑛-subGaussian (by 

concentration inequality on ҧ𝑆 with 𝑛 samples). We can derive the theorem. 

Proof of the Lemma (one can check 4.1.2 for more details).

𝐾𝐿 𝑃𝑋𝑌 𝑃𝑋 × 𝑃𝑌 ≥ 𝔼 𝜆𝑓 𝑋, 𝑌 − log𝔼 exp 𝜆𝑓 ෨𝑋, ෨𝑌 ≥ 𝜆 𝔼𝑓 𝑋, 𝑌 − 𝔼𝑓 ෨𝑋, ෨𝑌 −
𝜆2𝜎2

2
.

Jenson’s subGaussian



Take-away messages

(a) Mutual Information

(b) Information-based bound:

If 𝑊(𝑆) does not depend on 𝑆 much, the bound is small.

For 𝜎-subGaussian loss, we have

𝔼ℓ ҧ𝑆,𝑊(𝑆) − 𝔼ℓ 𝑆,𝑊 𝑆 ≤
2𝜎2

𝑛
𝐼 𝑆,𝑊 𝑆 .
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Thanks!
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All the slides will be available at www.tengjiaye.com/generalization soon.

http://www.tengjiaye.com/generalization

