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Recall:

Uniform Convergence: L(f) — L(f) < sup|L(f) — L(f)].
feF

Stability-based bound: similar dataset returns similar models

PAC-Bayesian bound: Bayesian training (parameter following a distribution),

\/ KL(P||Q) (P: prior distribution, Q: posterior distribution)

n

Today’s topic:
Information-based bound: another approach to generalization (measuring the
dependency)
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Information-based bound

One sentence: bound the generalization directly using its mutual information.

Similar to PAC-Bayes, we still consider stochastic parameter.
We want to bound the generalization gap
E¢(S,W(S)) —EL(S,W(S)).

A direct intuition: when W (S) has large dependency on S, the gap might be large.
But how to measure the dependency? — mutual information

Mutual Information:
For random variable X and Y, we define its mutual information as

X,
I(X, Y) — EXY lO p( y)

5P’

where I(X,Y)=0ifXindY.
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Information-based bound

One sentence: If W(S) and S has small mutual information, the bound is better.

E heorem (Mutual Information). Suppose the loss function #(w, z) Is a-subGaussian\
for all w (where the probability is on sample z), then

E£(S,W(S)) —EL(S,W(S)) < 2%ZI(S,W(S)).

- h J
Remark: Different paper may use different information form. Here we use the version
In Xu & Raginsky (2017) with the mutual information between the training set and the

trained parameter.

The bound is still y/n convergence rate.
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Information-based bound (proof)

4 heorem (Mutual Information). Suppose the loss function #(w, z) Is a-subGaussian\
for all w (where the probability is on sample z), then

2
E¢(S,W(S)) —EL(S,W(S)) < Zil(s, w(s)).
n
- \ J
Lemma: for random variable (X,Y)~Px X Pyx with independent copy ()? 17)~PX- X
Py, where Py = Pg and Py = Py, if f(X,¥) is subGaussian, we have
IEF(X,Y) —Ef(X,7)| < +/2021(X,Y).
Therefore, by setting f (X, V) as the test loss £(S, W (S)), it is o /y/n-subGaussian (by
concentration inequality on S with n samples). We can derive the theorem.
Proof of the Lemma (one can check 4.1.2 for more details).
A o?

KL(Pxy|Px X Py) = E[Af(X,Y)] —logEexp|Af(X,V)] = 2 [Ef (X, V) — Ef(X,7)]| - -
Jenson’s subGaussian
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Take-away messages

(a) Mutual Information
(b) Information-based bound:

If W (S) does not depend on S much, the bound is small.
For g-subGaussian loss, we have

_ 207
E£(S,W(S)) — EL(S,W(S)) < TI(S’ w(s)).
\
All the slides will be available at www.tengjiaye.com/generalization soon.
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Thanks!
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