泛化理论 第五章 Information-based Bound §5.1.1 Information-based Bound

@ 滕佳烨

[ref] Russo, D., & Zou, J. (2016, May). Controlling bias in adaptive data analysis using information theory. In *Artificial Intelligence and Statistics* (pp. 1232-1240). PMLR. [ref] Xu, A., & Raginsky, M. (2017). Information-theoretic analysis of generalization capability of learning algorithms. *Advances in Neural Information Processing Systems*, *30*.

泛化理论

Recall:

Uniform Convergence: $L(\hat{f}) - \hat{L}(\hat{f}) \le \sup_{f \in \mathcal{F}} |L(f) - \hat{L}(f)|$.

Stability-based bound: similar dataset returns similar models

PAC-Bayesian bound: Bayesian training (parameter following a distribution), $\sqrt{\frac{KL(P||Q)}{n}}$ (P: prior distribution, Q: posterior distribution)

Today's topic: Information-based bound: another approach to generalization (measuring the dependency)

Information-based bound

One sentence: bound the generalization directly using its mutual information.

Similar to PAC-Bayes, we still consider stochastic parameter. We want to bound the generalization gap $\mathbb{E}\ell(\bar{S}, W(S)) - \mathbb{E}\ell(S, W(S)).$

A direct intuition: when W(S) has large **dependency** on *S*, the gap might be large. But how to **measure** the **dependency**? \rightarrow **mutual information**

Mutual Information:

For random variable X and Y, we define its mutual information as

$$I(X,Y) = E_{XY} \log \frac{p(x,y)}{p(x)p(y)},$$

where I(X, Y) = 0 if X ind Y.

Information-based bound

One sentence: if W(S) and S has small mutual information, the bound is better.

Theorem (Mutual Information). Suppose the loss function $\ell(w, z)$ is σ -subGaussian for all w (where the probability is on sample z), then

$$\mathbb{E}\ell(\bar{S}, W(S)) - \mathbb{E}\ell(S, W(S)) \leq \sqrt{\frac{2\sigma^2}{n}} I(S, W(S)).$$

Remark: Different paper may use different information form. Here we use the version in Xu & Raginsky (2017) with the mutual information between the training set and the trained parameter.

The bound is still \sqrt{n} convergence rate.

Information-based bound (proof)

泛化理论

Theorem (Mutual Information). Suppose the loss function $\ell(w, z)$ is σ -subGaussian for all w (where the probability is on sample z), then

$$\mathbb{E}\ell(\bar{S}, W(S)) - \mathbb{E}\ell(S, W(S)) \leq \sqrt{\frac{2\sigma^2}{n}}I(S, W(S)).$$

Lemma: for random variable $(X, Y) \sim P_X \times P_{Y|X}$ with independent copy $(\tilde{X}, \tilde{Y}) \sim P_{\tilde{X}} \times P_{\tilde{Y}}$, where $P_X = P_{\tilde{X}}$ and $P_Y = P_{\tilde{Y}}$, if $f(\tilde{X}, \tilde{Y})$ is subGaussian, we have $|\mathbb{E}f(X,Y) - \mathbb{E}f(\tilde{X},\tilde{Y})| \le \sqrt{2\sigma^2 I(X,Y)}$. Therefore, by setting $f(\tilde{X}, \tilde{Y})$ as the test loss $\ell(\bar{S}, W(S))$, it is σ/\sqrt{n} -subGaussian (by concentration inequality on \bar{S} with n samples). We can derive the theorem. Proof of the Lemma (one can check 4.1.2 for more details).

$$KL(P_{XY}|P_X \times P_Y) \ge \mathbb{E}[\lambda f(X,Y)] - \log \mathbb{E} \exp[\lambda f(\tilde{X},\tilde{Y})] \ge \lambda \left[\mathbb{E}f(X,Y) - \mathbb{E}f(\tilde{X},\tilde{Y})\right] - \frac{\lambda^2 \sigma^2}{2}.$$

Jenson's subGaussian

@滕佳烨

Take-away messages

(a) Mutual Information
(b) Information-based bound:
If W(S) does not depend on S much, the bound is small.
For σ-subGaussian loss, we have

$$\mathbb{E}\ell(\bar{S}, W(S)) - \mathbb{E}\ell(S, W(S)) \leq \sqrt{\frac{2\sigma^2}{n}}I(S, W(S)).$$

All the slides will be available at <u>www.tengjiaye.com/generalization</u> soon.

@ 滕佳烨

Thanks!

