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Recall:

 Uniform Convergence: L(f) — L(f) < sup|L(f) — L(f)|.
fEF

« Stability-based bound: similar dataset returns similar models
« PAC-Bayesian bound: Bayesian training (parameter following a distribution),

\/ KLEPII®) (p: prior distribution, Q: posterior distribution)

n

* Information-based bound: mutual information \/%‘ZI(S,W(S))

Today’s topic:
Implicit bias: another view for generalization
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Implicit Bias
One sentence: Algorithm may prefer some type of simple solutions.

Modern neural networks are usually overparameterized.
« Overparameterization: # parameters >> # samples
Therefore, there are infinitely many solutions.

However, these solutions are not all good to generalization.
Fortunately, for a given algorithm, it has some preference on a given type of solution.
And usually, these preferred solutions are simple solutions.

What does “simple” mean?
 low-norm; low gradient; max-margin; etc.
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A simple case: overparameterized linear regression with gradient descent

4 N
Theorem (LR & GD). For linear regression with MSE loss #(x,y; 8) = (y — xTH)Z,
If we use full-batch GD with proper stepsize and zero initialization, the trained

@arameter converges to its min-norm solution. y

Remark:
1. Training loss: L(8;S) = %Z’lf‘:lf(xi,yi; 6) = %IIY — X0
GD iterate: ¢+ = 9 — 1V, L(8;S) = ©® —2xT(v — Xx9®)
n

2
3. Proper stepsize: 2 which can minimize the training loss to zero (1 < g,,;, (XX 1))
4. Min-norm solution: min||@|| such that X6 =Y

Model & Data: linear regression
Algorithm: gradient descent
Simple form: min-norm solutions

AV AP



A simple case: overparameterized linear regression with gradient descent

(_ _ N
Theorem (LR & GD). For linear regression with MSE loss #(x,y; 8) = (y — xTH)Z,
If we use full-batch GD with proper stepsize and zero initialization, the trained

\parameter converges to its min-norm solution. )

Proof: 0(t+D) = g® —2xT(y — xg©®)
n

«  For min-norm solution, we can write it as 6,,,,,, = XT(XXT)_lY (assume XX has
full rank for simplicity)
»  Note that we can always write it as (") = X Tv where v is a vector (see the iterate)

 Therefore, when X0(®) =Y = XXTv, v = (XXT)_lY, therefore 6(*) =@, ..

Note: when XX T is not full rank, one can reduce it to the full rank case.
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Take-away messages

(a) Implicit Bias: when there are infinitely many solutions, algorithm prefers some simple
solutions.

(b) Simple Case: Linear regression + gradient descent — min-norm solutions

All the slides will be available at www.tengjiaye.com/generalization soon.
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http://www.tengjiaye.com/generalization

