Concentration without dependency —function concentration

前情回顾:

Concentration of random variable

- Hoeffding Inequality, Bernstein Inequality Concentration of random vector
- Norm concentration
 Concentration of random matrix
- Eigenvalue concentration

They are all independent regimes!
Independent entries; Independent rows...

思考:

$$X \sim N(0, I_n), f: \mathbb{R}^n \to \mathbb{R}, \text{ w.h.p}$$

$$f(X) \approx \mathbb{E}f(X)$$

- 1. If $f = a^T x$ is linear, easy since f(X) is gaussian distribution.
- 2. If *f* is non-linear...Not always true, especially when *f* oscillate wildly 当 f 的波动非常大,那么它可能离均值就会很远例如,X本身sub-Gaussian,而f(X) 非sub-Gaussian 怎么办?对 f 的波动做出限制!

Lipschitz Functions (w.r.t. some distance metric!)

Definition 5.1.1 (Lipschitz functions). Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is called Lipschitz if there exists $L \in \mathbb{R}$ such that

$$d_Y(f(u), f(v)) \le L \cdot d_X(u, v)$$
 for every $u, v \in X$.

The infimum of all L in this definition is called the Lipschitz norm of f and is denoted $||f||_{Lip}$.

核心: Lipschitz 函数跑的不能比线性快

- (a) Every Lipschitz function is uniformly continuous.
- (b) Every differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is Lipschitz, and

$$||f||_{\text{Lip}} \le \sup_{x \in \mathbb{R}^n} ||\nabla f(x)||_2.$$

导数有界 (强条件)

- →Lipschitz连续
- →一致连续

Concentration on the sphere with Euclidean metric

Theorem 5.1.4 (Concentration of Lipschitz functions on the sphere). Consider a random vector $X \sim \text{Unif}(\sqrt{n}S^{n-1})$, i.e. X is uniformly distributed on the Euclidean sphere of radius \sqrt{n} . Consider a Lipschitz function $f: \sqrt{n}S^{n-1} \to \mathbb{R}$. Then

$$||f(X) - \mathbb{E} f(X)||_{\psi_2} \le C||f||_{\text{Lip}}.$$

Using the definition of the sub-gaussian norm, the conclusion of Theorem 5.1.4 can be stated as follows: for every $t \geq 0$, we have

$$\mathbb{P}\left\{|f(X) - \mathbb{E}f(X)| \ge t\right\} \le 2\exp\left(-\frac{ct^2}{\|f\|_{\text{Lip}}^2}\right).$$

Theorem 5.1.4 (Concentration of Lipschitz functions on the sphere). Consider a random vector $X \sim \text{Unif}(\sqrt{n}S^{n-1})$, i.e. X is uniformly distributed on the Euclidean sphere of radius \sqrt{n} . Consider a Lipschitz function $f: \sqrt{n}S^{n-1} \to \mathbb{R}$. Then

$$||f(X) - \mathbb{E} f(X)||_{\psi_2} \le C||f||_{\text{Lip}}.$$

Using the definition of the sub-gaussian norm, the conclusion of Theorem 5.1.4 can be stated as follows: for every $t \geq 0$, we have

$$\mathbb{P}\left\{|f(X) - \mathbb{E}f(X)| \ge t\right\} \le 2\exp\left(-\frac{ct^2}{\|f\|_{\text{Lip}}^2}\right).$$

Hint:

- 1. 证明对均值的concentration, 等价于证明对中位数的concentration
- 2. 寻找到 $f(X) \le M$ 的X集合,如果我们将其扩充到 $f(X') = f(X) + [f(X') f(X)] \le M + t$ [Here we use the fact that $||f||_{Lip} = 1$ and $||X' X|| \le t$],将会产生一个指数的界(0-1律)

Concentration on the Gaussian RV with Euclidean metric

Theorem 5.2.2 (Gaussian concentration). Consider a random vector $X \sim N(0, I_n)$ and a Lipschitz function $f: \mathbb{R}^n \to \mathbb{R}$ (with respect to the Euclidean metric). Then $||f(X) - \mathbb{E} f(X)||_{\psi_2} \leq C||f||_{\text{Lip}}. \tag{5.7}$

Concentration on the Bernoulli RV with Hamming metric

Theorem 5.2.5 (Concentration on the Hamming cube). Consider a random vector $X \sim \text{Unif}\{0,1\}^n$. (Thus, the coordinates of X are independent Ber(1/2) random variables.) Consider a function $f:\{0,1\}^n \to \mathbb{R}$. Then

$$||f(X) - \mathbb{E}f(X)||_{\psi_2} \le \frac{C||f||_{\text{Lip}}}{\sqrt{n}}.$$
 (5.8)

Take-away Messages

- 1. $f(X) \to \mathbb{E}f(X)$ with f Lipschitz and $X \sim \mathbb{P}$
- 2. Lipschitz: which metric?
- 3. $X \sim \mathbb{P}$, which distribution?
 - sphere with Euclidean metric
 - Gaussian RV with Euclidean metric
 - Bernoulli RV with Hamming metric

Take-away Messages

- 1. $f(X) \to \mathbb{E}f(X)$ with f Lipschitz and $X \sim \mathbb{P}$
- 2. Lipschitz: which metric?
- 3. $X \sim \mathbb{P}$, which distribution?
 - sphere with Euclidean metric
 - Gaussian RV with Euclidean metric
 - Bernoulli RV with Hamming metric