HDP (13) Matrix Bernstein Inequality

前情回顾:

 $f(X) \to \mathbb{E}f(X)$ with f Lipschitz and $X \sim \mathbb{P}$

- sphere with Euclidean metric
- Gaussian RV with Euclidean metric
- Bernoulli RV with Hamming metric
- → Matrix Bernstein Inequality

前情回顾:

Bernstein's inequality (3)

Theorem 2.8.4 (Bernstein's inequality for bounded distributions). Let X_1, \ldots, X_N be independent, mean zero random variables, such that $|X_i| \leq K$ all i. Then, for every $t \geq 0$, we have

$$\mathbb{P}\left\{\left|\sum_{i=1}^{N} X_i\right| \ge t\right\} \le 2\exp\left(-\frac{t^2/2}{\sigma^2 + Kt/3}\right).$$

Here $\sigma^2 = \sum_{i=1}^N \mathbb{E} X_i^2$ is the variance of the sum.

Matrix concentration (10)

Theorem 6.5.1 (Norms of random matrices with non-i.i.d. entries). Let A be an $n \times n$ symmetric random matrix whose entries on and above the diagonal are independent, mean zero random variables. Then

$$\mathbb{E} \|A\| \le C\sqrt{\log n} \cdot \mathbb{E} \max_{i} \|A_i\|_2,$$

where A_i denote the rows of A.

Matrix Bernstein Inequality:

Theorem 5.4.1 (Matrix Bernstein's inequality). Let X_1, \ldots, X_N be independent, mean zero, $n \times n$ symmetric random matrices, such that $||X_i|| \leq K$ almost surely for all i. Then, for every $t \geq 0$, we have

$$\mathbb{P}\left\{\left\|\sum_{i=1}^{N} X_i\right\| \ge t\right\} \le 2n \exp\left(-\frac{t^2/2}{\sigma^2 + Kt/3}\right).$$

Here $\sigma^2 = \left\| \sum_{i=1}^N \mathbb{E} X_i^2 \right\|$ is the norm of the matrix variance of the sum.

$$\mathbb{E} \left\| \sum_{i=1}^{N} X_i \right\| \lesssim \left\| \sum_{i=1}^{N} \mathbb{E} X_i^2 \right\|^{1/2} \sqrt{1 + \log n} + K(1 + \log n).$$

考虑的是矩阵的**和**的norm,而不是矩阵的 norm Hint: $f(x) = tr(\exp H + log X)$,拆分前N-1项与第N项,f(x)期望有上界

Matrix Hoeffding Inequality:

Exercise 5.4.12 (Matrix Hoeffding's inequality). Let $\varepsilon_1, \ldots, \varepsilon_n$ be independent symmetric Bernoulli random variables and let A_1, \ldots, A_N be symmetric $n \times n$ matrices (deterministic). Prove that, for any $t \geq 0$, we have

$$\mathbb{P}\left\{\left\|\sum_{i=1}^{N} \varepsilon_{i} A_{i}\right\| \geq t\right\} \leq 2n \exp(-t^{2}/2\sigma^{2}),$$

where $\sigma^2 = \left\| \sum_{i=1}^N A_i^2 \right\|$.

Khintchine's Inequality:

$$\mathbb{E}\left\|\sum_{i=1}^{N} \varepsilon_i A_i\right\| \le C\sqrt{1 + \log n} \left\|\sum_{i=1}^{N} A_i^2\right\|^{1/2}.$$

Covariance Estimation

Theorem 5.6.1 (General covariance estimation). Let X be a random vector in \mathbb{R}^n , $n \geq 2$. Assume that for some $K \geq 1$,

$$||X||_2 \le K (\mathbb{E} ||X||_2^2)^{1/2}$$
 almost surely. (5.16)

Then, for every positive integer m, we have

$$\mathbb{E} \|\Sigma_m - \Sigma\| \le C \left(\sqrt{\frac{K^2 n \log n}{m}} + \frac{K^2 n \log n}{m} \right) \|\Sigma\|.$$

Exercise 5.6.4 (Tail bound). $\blacksquare \blacksquare$ Our argument also implies the following high-probability guarantee. Check that for any $u \ge 0$, we have

$$\|\Sigma_m - \Sigma\| \le C\left(\sqrt{\frac{K^2 r(\log n + u)}{m} + \frac{K^2 r(\log n + u)}{m}}\right) \|\Sigma\|$$

with probability at least $1 - 2e^{-u}$. Here $r = \operatorname{tr}(\Sigma)/\|\Sigma\| \le n$ as before.

Take-away Messages

1. Matrix Bernstein's Inequality (randomness on *X*)

$$P(||\sum X_i|| \ge t) \le n \exp(-\frac{t^2}{\sigma^2 + Kt})$$

2. Matrix Hoeffding Inequality (randomness on ϵ)

$$P(||\sum \epsilon X_i|| \ge t) \le n \exp(-\frac{t^2}{2\sigma^2})$$

3. Covariance Estimation

$$\left| |\Sigma_m - \Sigma| \right| \le K \sqrt{\frac{r \log n}{m}}$$

@ 滕佳烨