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f(X) — Ef(X) with f Lipschitz and X~P
« sphere with Euclidean metric
« (Gaussian RV with Euclidean metric
« Bernoulli RV with Hamming metric

— Matrix Bernstein Inequality
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Bernstein’s inequality (3)

Theorem 2.8.4 (Bernstein’s inequality for bounded distributions). Let Xq,..., Xy
be independent, mean zero random variables, such that | X;| < K alli. Then, for
every t > 0, we have
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Here 02 = 5. E X2 is the variance of the sum.

Matrix concentration (10)
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Theorem 6.5.1 (Norms of random matrices with non-i.i.d. entries). Let A be
an n X n symmetric random matrix whose entries on and above the diagonal are
independent, mean zero random variables. Then

E A < Cy/logn - Emax|| A,

where A; denote the rows of A.



Matrix Bernstein Inequality:

Theorem 5.4.1 (Matrix Bernstein’s inequality). Let Xi,..., Xy be independent,
mean zero, n X n|symmetric|random matrices, such that | X;|| < K almost surely

for all 1. Then, for everyt > 0, we have
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Here 0 = HZi\il E X?|| is the norm of the matriz variance of the sum.
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Matrix Hoeffding Inequality:

Exercise 5.4.12 (Matrix Hoeffding’s inequality). sdsed Letcq,..., g, be inde-
pendent symmetric Bernoulli random variables and let A, ..., Ay be symmetric
n X n matrices (deterministic).|Prove that, for any ¢t > 0, we have
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> t} < 2nexp(—t*/207),

N
where o2 = || 3,1, A2

Khintchine’s Inequality:
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Covariance Estimation

Theorem 5.6.1 (General covariance estimation). Let X be a random wvector in
R™, n > 2. Assume that for some K > 1,

1 X, < K(E|X|5Y? | almost surely. (5.16)

Then, for every positive integer m, we have

K?nlogn K?nlogn
B, — ) < o Kmoen ) IS
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Exercise 5.6.4 (Tail bound). se# Our argument also implies the following
high-probability guarantee. Check that for any v > 0, we have

K2r(logn+u) K?*r(logn + u)
|2 — 2 < c(\/ + ) 1=

™ m

with probability at least 1 — 2e™". Here r = tr(X)/||X|| < n as before.



Take-away Messages

1. Matrix Bernstein’s Inequality (randomness on X)

t2
P(|IZX;|| = t) < nexp(— = Kt)

2. Matrix Hoeffding Inequality (randomness on €)
t2

P(||26Xi| > t) < nexp(—zf‘2

3. Covariance Estimation

rlogn

12, —ZI| < K
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Thanks!
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