HDP (14) Johnson-Lindenstrauss Lemma

前情回顾:

$f(X) \rightarrow \mathbb{E}f(X)$ with f Lipschitz and $X \sim \mathbb{P}$

- sphere with Euclidean metric
- Gaussian RV with Euclidean metric
- Bernoulli RV with Hamming metric
- → Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma

Theorem 5.3.1 (Johnson-Lindenstrauss Lemma). Let \mathcal{X} be a set of N points in \mathbb{R}^n and $\varepsilon > 0$. Assume that

$$m \ge (C/\varepsilon^2) \log N.$$

Consider a random m-dimensional subspace E in \mathbb{R}^n uniformly distributed in $G_{n,m}$. Denote the orthogonal projection onto E by P. Then, with probability at least $1 - 2\exp(-c\varepsilon^2 m)$, the scaled projection

$$Q := \sqrt{\frac{n}{m}} P$$

is an approximate isometry on \mathcal{X} :

$$(1-\varepsilon)\|x-y\|_{2} \le \|Qx-Qy\|_{2} \le (1+\varepsilon)\|x-y\|_{2} \quad for \ all \ x, y \in \mathcal{X}.$$
(5.10)

Johnson-Lindenstrauss Lemma

Points = N

Orthogonal projection from Dim n [high] to Dim m [low] Dimension: $m = \Omega(\log N)$ [not too low] Then w.h.p, the projection Q is approximate isometry [the original data structure does not change too much]

$$(1-\varepsilon)\|x-y\|_2 \le \|Qx-Qy\|_2 \le (1+\varepsilon)\|x-y\|_2 \quad \text{for all } x, y \in \mathcal{X}.$$

Proof Hint: Transfer the randomness on Q to (x-y), then x-y is uniform on the sphere. Directly apply concentration of f(x) where $f(x) = ||Px||_2$

Take-away Messages

JL lemma: when we do orthogonal projection from high dim to low dim ($\Omega(\log N)$), the distance between two data points does not change much.

Thanks!