HDP (15) Concentration of Quadratic forms

前情回顾:

$f(X) \rightarrow \mathbb{E}f(X)$ with f Lipschitz and $X \sim \mathbb{P}$

- sphere with Euclidean metric
- Gaussian RV with Euclidean metric
- Bernoulli RV with Hamming metric
- → Matrix Bernstein Inequality
- → Johnson-Lindenstrauss Lemma

f(X) Lipschitz is sufficient but not necessary Consider a specific form (quadratic) $f(X) = X^T A X$

Honson-Wright Inequality

Theorem 6.2.1 (Hanson-Wright inequality). Let $X = (X_1, \ldots, X_n) \in \mathbb{R}^n$ be a random vector with independent, mean zero, sub-gaussian coordinates. Let A be an $n \times n$ matrix. Then, for every $t \ge 0$, we have

$$\mathbb{P}\left\{|X^{\mathsf{T}}AX - \mathbb{E}X^{\mathsf{T}}AX| \ge t\right\} \le 2\exp\left[-c\min\left(\frac{t^2}{K^4 \|A\|_F^2}, \frac{t}{K^2 \|A\|}\right)\right],\$$

where $K = \max_{i} ||X_{i}||_{\psi_{2}}$.

- 1. X is sub-Gaussian, X² is sub-Expenential
- 2. $X^{T}AX$ is not Lipschitz w.r.t. X
- 3. Proof Hint: decoupling $(X^{T}AX \rightarrow X^{T}AX')$

Decoupling $(X^{T}AX \rightarrow X^{T}AX')$

- 1. Note that the bottleneck of analyzing X^TAX is the dependency between $a_{ij}x_ix_j$ and $a_{ik}x_ix_k$
- 2. By using the independent copy of *X*, we analyze X^TAX' instead of X^TAX by the following Lemma

Theorem 6.1.1 (Decoupling). Let A be an $n \times n$, diagonal-free matrix (i.e. the diagonal entries of A equal zero). Let $X = (X_1, \ldots, X_n)$ be a random vector with independent mean zero coordinates X_i . Then, for every convex function $F : \mathbb{R} \to \mathbb{R}$, one has

$$\mathbb{E}F(X^{\mathsf{T}}AX) \le \mathbb{E}F(4X^{\mathsf{T}}AX') \tag{6.3}$$

where X' is an independent copy of X.

Set $F(x) = \exp \lambda x \rightarrow MGF \rightarrow (Markov)$ Tail Bound

Finish the proof

- 1. Diag entries: directly bound $a_{ii}x_i^2$
- 2. Off-diag entries:
 - 1. using decoupling and bound its MGF [$\mathbb{E}\exp \lambda X$, convex]
 - 2. Gaussian is worst-case of sub-Gaussian
 - 3. Calculate the bound using Gaussian RV

Lemma 6.2.3 (Comparison). Consider independent, mean zero, sub-gaussian random vectors X, X' in \mathbb{R}^n with $||X||_{\psi_2} \leq K$ and $||X'||_{\psi_2} \leq K$. Consider also independent random vectors $g, g' \sim N(0, I_n)$. Let A be an $n \times n$ matrix. Then

$$\mathbb{E}\exp(\lambda X^{\mathsf{T}}AX') \leq \mathbb{E}\exp(CK^2\lambda g^{\mathsf{T}}Ag')$$

for any $\lambda \in \mathbb{R}$.

Lemma 6.2.2 (MGF of Gaussian chaos). Let $X, X' \sim N(0, I_n)$ be independent and let $A = (a_{ij})$ be an $n \times n$ matrix. Then

 $\mathbb{E}\exp(\lambda X^{\mathsf{T}}AX') \le \exp(C\lambda^2 \|A\|_F^2)$

for all λ satisfying $|\lambda| \leq c/||A||$.

Honson-Wright Inequality (high dim)

Theorem 6.2.1 (Hanson-Wright inequality). Let $X = (X_1, \ldots, X_n) \in \mathbb{R}^n$ be a random vector with independent, mean zero, sub-gaussian coordinates. Let A be an $n \times n$ matrix. Then, for every $t \ge 0$, we have

$$\mathbb{P}\left\{|X^{\mathsf{T}}AX - \mathbb{E}X^{\mathsf{T}}AX| \ge t\right\} \le 2\exp\left[-c\min\left(\frac{t^2}{K^4 \|A\|_F^2}, \frac{t}{K^2 \|A\|}\right)\right],$$

where $K = \max_{i} ||X_{i}||_{\psi_{2}}$.

Exercise 6.2.7 (Higher-dimensional Hanson-Wright inequality). Let X_1, \ldots, X_n be independent, mean zero, sub-gaussian random vectors in \mathbb{R}^d . Let $A = (a_{ij})$ be an $n \times n$ matrix. Prove that for every $t \ge 0$, we have

$$\mathbb{P}\left\{\left|\sum_{i,j:i\neq j}^{n} a_{ij}\left\langle X_{i}, X_{j}\right\rangle\right| \ge t\right\} \le 2\exp\left[-c\min\left(\frac{t^{2}}{K^{4}d\|A\|_{F}^{2}}, \frac{t}{K^{2}\|A\|}\right)\right]$$

where $K = \max_i \|X_i\|_{\mathcal{U}_2}$.

Take-away Messages

- 1. Honson-Wright Inequality: quadratic form concentration
- 2. The bound is similar to sub-exponential
- 3. Decoupling: $X^T A X \rightarrow X^T A X'$
- 4. Honson-Wright Inequality can be used in deriving the concentration: $||BX||_2 \rightarrow ||B||_F$, see (10)

