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Analyze E sup X; for Gaussian Process
teT

1. Slepian’s Inequality: Small fluctuation leads to small expectation.

2. Sudakov-Fernique’s Inequality: remove variance requirement (only
expectation results)

3. Gordon’s inequality: two-dim extension

4. *Sudakov’s minoration inequality: lower bound, Geometric

Today: we want to analyze a more general random process!



Random Process from Gaussian to sub-Gaussian

Sub-Gaussian increments

Definition 8.1.1 (Sub-gaussian increments). Consider a random process (X;):er
on a metric space (T, d). We say that the process has sub-gaussian increments if

there exists K > 0 such that
| X — Xs||lg, < Kd(t,s) forallt,seT. (8.1)



Dudley’s inequality

Theorem 8.1.3 (Dudley’s integral inequality). Let (X;)ier be a mean zero ran-

dom process on a metric space (T,d) with sub-gaussian increments as in (8.1).
Then

]EsupXt§C'K/ \/logN(T,d,e)de.
0

teT

Esup X; < C’KZ2_’“\/10gN(T, d,27F).

teT kc7

Note: there Is a gap between Dudley’s inequality (upper bound) and Sudakov’s
Inequality (lower bound).
Proof: Chaining.



Dudley’s inequality

Theorem 8.1.3 (Dudley’s integral inequality). Let (X;)ier be a mean zero ran-

dom process on a metric space (T,d) with sub-gaussian increments as in (8.1).
Then

]EsupXt§C'K/ \/logN(T,d,e)de.
0

teT

Esup X; < C’KZ2_’“\/10gN(T, d,27F).

teT kc7

Note: there Is a gap between Dudley’s inequality (upper bound) and Sudakov’s
Inequality (lower bound).
Proof: Chaining (multi-scale version of covering e-Net.).



A false covering number approach

Esup Xt < Esup Xﬂ.(t) + ESUp(Xt — Xﬂ.(t)).

teT teT terT

Union bound for the first term
Covering number for the second term | X — Xoy g, < Ke.

However, ‘sup’ term block the way, since ‘point convergence is not uniform
convergence’

(lead to a \/log |T| bound)




Chaining method

K
ESUp(Xt — Xto) S Z ESU.p(Xﬂ-k(t) — Xﬂ-k_l(t)).

teT k=r+1 teT]

Instead of considering only one covering set, we consider a chain.
During the chain, the point get closer (not strictly) to t step by step.
Intuition: uniform convergence requires the convergence rate of each point.

ESUP(ka(t) — ka_l(t)) < Cegq \/1085 |Tk‘

teT



Dudley’s inequality (tail bound version)

Theorem 8.1.6 (Dudley’s integral inequality: tail bound). Let (X;)icr be a
random process on a metric space (T, d) with sub-gaussian increments as in (8.1).
Then, for every u > 0, the event

sup |X; — X,| < CK[/ \/logN(T, d,e)de + u - diam(T)}
0

t,seT

holds with probability at least 1 — 2 exp(—u?).



Dudley’s inequality (Remark)

Remark 8.1.9 (Limits of Dudley’s integral). Although Dudley’s integral is for-
mally over |0, co|, we can clearly make the upper bound equal the diameter of T

in the metric d, thus

diam(7")
Esup X; < C’K/ \/logN(T, d,e) de. (8.13)
0

teT

Indeed, if ¢ > diam(7) then a single point (any point in 7") is an e-net of T,
which shows that log N (T, d,e) = 0 for such e.



Dudley’s inequality (Not tight)

Exercise 8.1.12 (Dudley’s inequality can be loose). ssse Let e,
note the canonical basis vectors in R™. Consider the set

T .= {ﬁ kzl,...,n}.

(a) Show that
w(T) < C,

where as usual C denotes an absolute constant.

Hint: This should be straightforward from Exercise 2.5.10.
(b) Show that

/ \/logN(T,d,e)deﬁ 00
0

as n — oC.
Hint: The first m vectors in T form a (1/+/log m)-separated set.

oo, e, de-

V1og N (T, d,¢)

Dudley

V%
Sudakov

Note: Sodakov’s inequality (upper bound) 1s derived from Dudley’s inequality,

which is not tight (sub-opt up to log n).

€



Take-away Messages

1. Dudley’s inequality. The upper bound of E e 4 Xt

2. Chaining method: extension to covering numbers.
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Thanks!
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