HDP (22) VC dimension

前情回顾

The upper bound of $\mathbb{E} \sup X_t$

Dudley's inequality

- $\sup_{t \in T} X_t \\ \mathbb{E} \sup_{t \in T} X_t \le CK \int_0^\infty \sqrt{\log \mathcal{N}(T, d, \varepsilon)} \, d\varepsilon.$
- 2. Generic Chaining Bound with γ_2 (tighter but harder to calculate)
- The lower bound of $\mathbb{E} \sup_{t \in T} X_t$ 1. Sudakov's minoration inequality $\mathbb{E} \sup_{t \in T} X_t \ge c \varepsilon \sqrt{\log \mathcal{N}(T, d, \varepsilon)}.$

An application: VC dimension

Definition 8.3.1 (VC dimension). Consider a class \mathcal{F} of Boolean functions on some domain Ω . We say that a subset $\Lambda \subseteq \Omega$ is *shattered* by \mathcal{F} if any function $g: \Lambda \to \{0, 1\}$ can be obtained by restricting some function $f \in \mathcal{F}$ onto Λ . The *VC dimension* of \mathcal{F} , denoted vc(\mathcal{F}), is the largest cardinality¹ of a subset $\Lambda \subseteq \Omega$ shattered by \mathcal{F} .

> 0 • • 0 • 1

0

• 1

Hint: 一个函数族最多**可以完全**"拟合"多少点

可以: 点的位置存在即可

完全:固定点以后label要任意变化 例如:线性函数族可以拟合任意n+1个点

Pajor's Lemma

Lemma 8.3.13 (Pajor's Lemma). Let \mathcal{F} be a class of Boolean functions on a finite set Ω . Then

 $|\mathcal{F}| \leq |\{\Lambda \subseteq \Omega : \Lambda \text{ is shattered by } \mathcal{F}\}|.$

We include the empty set $\Lambda = \emptyset$ in the counting on the right side.

$$|\mathcal{F}| \ge 2^{\mathrm{vc}(\mathcal{F})}.$$

Hint: induction.

Remark: although there are many Boolean functions (infinite), we first consider it on finite set, which may produce a small cardinality (at most $2^{|\Omega|}$). For linear classifiers, there are many hyperplanes in the space, however, when considering two points, the hyperplanes can only produce like 0,1 or 1,0.

Sauer-Shelah Lemma

Theorem 8.3.16 (Sauer-Shelah Lemma). Let \mathcal{F} be a class of Boolean functions on an *n*-point set Ω . Then

$$|\mathcal{F}| \le \sum_{k=0}^{d} \binom{n}{k} \le \left(\frac{en}{d}\right)^{d}$$

where $d = \operatorname{vc}(\mathcal{F})$.

Hint: apply pajor's Lemma with knowledge $|\Lambda| \leq d$. Intuition: the complexity of $|\mathcal{F}|$ is bounded using VC dim. Limitation: there can be only finite $|\mathcal{F}|$ (on the finite dataset).

Covering numbers via VC dim

Theorem 8.3.18 (Covering numbers via VC dimension). Let \mathcal{F} be a class of Boolean functions on a probability space (Ω, Σ, μ) . Then, for every $\varepsilon \in (0, 1)$, we have

$$\mathcal{N}(\mathcal{F}, L^2(\mu), \varepsilon) \le \left(\frac{2}{\varepsilon}\right)^{Cd}$$

where $d = \operatorname{vc}(\mathcal{F})$.

Intuition: the covering number of \mathcal{F} is bounded using VC dim (c.f., dim). Hint: reduce the domain Ω to Ω_n (n points subset) which requires that with a constant prob, two ϵ -separated functions on Ω (related to packing numbers, also covering numbers of \mathcal{F}) are still separated well on Ω_n (related to $|\mathcal{F}_n|$)

VC dim and generalization

Theorem 8.3.23 (Empirical processes via VC dimension). Let \mathcal{F} be a class of Boolean functions on a probability space (Ω, Σ, μ) with finite VC dimension $vc(\mathcal{F}) \geq 1$. Let X, X_1, X_2, \ldots, X_n be independent random points in Ω distributed according to the law μ . Then

$$\mathbb{E}\sup_{f\in\mathcal{F}} \left|\frac{1}{n}\sum_{i=1}^{n} f(X_i) - \mathbb{E}f(X)\right| \le C\sqrt{\frac{\operatorname{vc}(\mathcal{F})}{n}}.$$
(8.29)

Hint:

Rademacher Complexity ->(Dudley's ineq) Covering number -> VC dim

Take-away Messages

- 1. VC dim
 - A way to model the complexity of function class
 - Covering number can be bounded by VC dim $(1/\epsilon)^d$
 - Empirical process can be bounded by VC dim $(\sqrt{d/n})$

