HDP (25) Sparse Recovery

M* bound: For the intersect of a set T and a random space, its diam can be very small w.h.p.

Escaping Theorem: with a large m, the intersection can be empty w.h.p.

Recovery Problem

Signal $x \in \mathbb{R}^n$ (noisy measurement) $Y = Ax + w \in \mathbb{R}^m$ ($m \ll n$) Goal: recover x from (A, Y)

Different from regression, the goal is to recover x instead of estimating coefficient (but similarly).

Besides, we can usually choose *A* to meet some property (instead, the distribution of x in fixed in linear regression)

Note that when $m \ll n$, there can be many solutions (ill-posed). Therefore, we need to add some prior information on signal x.

Noiseless Recovery Problem

Signal $x \in \mathbb{R}^n$, (noiseless measurement) $Y = Ax + w \in \mathbb{R}^m$ ($m \ll n$) Prior information on $x: x \in T$

All the solutions forms a kernel space of A ($x \in x' + Ker(A)$) Kernel space (with a shift)? M^* bound?

Theorem 10.2.1. Suppose the rows A_i of A are independent, isotropic and subgaussian random vectors. Then any solution \hat{x} of the program (10.4) satisfies

$$\mathbb{E} \|\widehat{x} - x\|_2 \le \frac{CK^2w(T)}{\sqrt{m}},$$

where $K = \max_{i} ||A_{i}||_{\psi_{2}}$.

find
$$x': y = Ax', \quad x' \in T.$$
 (10.4)

Every point that satisfies Ax=Y is close to the true signal x.

Noisy Recovery Problem

Signal $x \in \mathbb{R}^n$, (noisy measurement) $Y = Ax + w \in \mathbb{R}^m$ ($m \ll n$) Prior information on $x: x \in T$

Exercise 10.2.4 (Noisy measurements). \clubsuit Extend the recovery result (Theorem 10.2.1) for the noisy model y = Ax + w we considered in (10.1). Namely, show that

$$\mathbb{E} \|\widehat{x} - x\|_2 \le \frac{CK^2 w(T) + \|w\|_2}{\sqrt{m}}.$$
find $x': y = Ax', \quad x' \in T.$

(10.4)

Hint: although x' does not satisfy Ax' = Ax, it is close to x^0 (any point with $Ax^0 = Ax$, choose a proper one) since $A(x' - x^0) = w$

The prior T: Sparsity (noiseless)

$$T = \{ x \in \mathbb{R}^n : \|x\|_0 \le s \}.$$

The problem is well posed when $m > 2||x||_0$ However, it is hard to calculate since T is non-convex. Therefore, we want to relax T to its convex version.

$$\{x \in \mathbb{R}^n : \|x\|_0 \le s, \|x\|_2 \le 1\} \subset \sqrt{s}B_1^n.$$

The prior T: Sparsity (noiseless)

$$\{x \in \mathbb{R}^n : \|x\|_0 \le s, \|x\|_2 \le 1\} \subset \sqrt{s}B_1^n.$$

Corollary 10.3.4 (Sparse recovery: guarantees). Assume the unknown s-sparse signal $x \in \mathbb{R}^n$ satisfies $||x||_2 \leq 1$. Then x can be approximately recovered from the random measurement vector y = Ax by a solution \hat{x} of the program (10.6). The recovery error satisfies

$$\mathbb{E} \|\widehat{x} - x\|_2 \le CK^2 \sqrt{\frac{s\log n}{m}}$$

Note that the approximation is almost tight! (the gaussian width is optimal up to a constant).

Low-rank Matrix Recovery

Signal $x \in R^{d*d}$, (noiseless measurement) $Y_i = A_i \cdot X \in R$ $(m \ll n)$ Prior information on $X: Rank(X) \leq r$ [c.f. $||x||_0$ in vector]

Nuclear norm (c.f. $||x||_1$) $||X||_* := ||s(X)||_1 = \sum_{i=1}^d s_i(X) = tr(\sqrt{X^T X})$

$$\left\{X \in \mathbb{R}^{d \times d} : \operatorname{rank}(X) \le r, \, \|X\|_F \le 1\right\} \subset \sqrt{r}B_*.$$

Exercise 10.4.5 (Low-rank matrix recovery: guarantees). \blacksquare Suppose the random matrices A_i are independent and have all independent, sub-gaussian entries.¹ Assume the unknown $d \times d$ matrix X with rank r satisfies $||X||_F \leq 1$. Show that X can be approximately recovered from the random measurements y_i by a solution \hat{X} of the program (10.11). Show that the recovery error satisfies

$$\mathbb{E} \|\widehat{X} - X\|_F \le CK^2 \sqrt{\frac{rd}{m}}.$$

Hint: use the Gaussian width of nuclear norm ball.

Exact sparse recovery (noiseless)

Theorem 10.5.1 (Exact sparse recovery). Suppose the rows A_i of A are independent, isotropic and sub-gaussian random vectors, and let $K := \max_i ||A_i||_{\psi_2}$. Then the following happens with probability at least $1 - 2\exp(-cm/K^4)$. Assume an unknown signal $x \in \mathbb{R}^n$ is s-sparse and the number of measurements m satisfies

 $m \ge CK^4 s \log n.$

Then a solution \hat{x} of the program (10.12) is exact, i.e.

$$\widehat{x} = x.$$

When m (#samples) is large, the signal can be recovered perfectly.

Exact sparse recovery (noiseless, intuition)

(a) Exact sparse recovery happens when the random subspace E_x is tangent to the ℓ_1 ball at the point x.

(b) The tangency occurs iff E_x is disjoint from the spherical part S(x) of the tangent cone T(x) of the ℓ_1 ball at point x.

Hint: prove that the residual $h = x - \hat{x}$ satisfying $||h||_1 \le \sqrt{2s} ||h||_2$

Exact sparse recovery (noiseless, general RIP condition)

Definition 10.5.8 (RIP). An $m \times n$ matrix A satisfies the *restricted isometry* property (RIP) with parameters α , β and s if the inequality

 $\alpha \|v\|_{2} \le \|Av\|_{2} \le \beta \|v\|_{2}$

holds for all vectors $v \in \mathbb{R}^n$ such that $||v||_0 \leq s$.

Intuition: the matrix A is approximate isometric, closely related to eigenvalues.

Theorem 10.5.10 (RIP implies exact recovery). Suppose an $m \times n$ matrix A satisfies RIP with some parameters α, β and $(1 + \lambda)s$, where $\lambda > (\beta/\alpha)^2$. Then every s-sparse vector $x \in \mathbb{R}^n$ can be recovered exactly by solving the program (10.12), i.e. the solution satisfies

$$\widehat{x} = x.$$

Random matrix meets the RIP condition.

Theorem 10.5.11 (Random matrices satisfy RIP). Consider an $m \times n$ matrix A whose rows A_i of A are independent, isotropic and sub-gaussian random vectors, and let $K := \max_i ||A_i||_{\psi_2}$. Assume that

 $m \ge CK^4 s \log(en/s).$

Then, with probability at least $1-2\exp(-cm/K^4)$, the random matrix A satisfies RIP with parameters $\alpha = 0.9\sqrt{m}$, $\beta = 1.1\sqrt{m}$ and s.

minimize $||y - Ax'||_2$ s.t. $||x'||_1 \le R$.

Theorem 10.6.1 (Performance of Lasso). Suppose the rows A_i of A are independent, isotropic and sub-gaussian random vectors, and let $K := \max_i ||A_i||_{\psi_2}$. Then the following happens with probability at least $1 - 2\exp(-s\log n)$. Assume an unknown signal $x \in \mathbb{R}^n$ is s-sparse and the number of measurements

 $m \ satisfies$

$$m \ge CK^4 s \log n. \tag{10.23}$$

Then a solution \hat{x} of the program (10.22) with $R := ||x||_1$ is accurate, namely

$$\|\widehat{x} - x\|_2 \le C\sigma \sqrt{\frac{s\log n}{m}},$$

where $\sigma = \|w\|_2 / \sqrt{m}$.

Remark 10.6.3 (Exact recovery). In the noiseless model y = Ax we have w = 0 and thus Lasso recovers x exactly, i.e.

$$\widehat{x} = x$$

Take-away Messages (noiseless setting)

Vector recovery problem:

- $\ell_0 + \ell_2 \approx \ell_1$
- Error bound $\sqrt{s \log n / m}$ [M* bound]
- Exact recovery $m \sim s \log n$ [Escaping Theorem] Matrix recovery problem:
- $\| \cdot \| \perp \| \cdot \| \sim \| \cdot \|$
- $\|\cdot\|_0 + \|\cdot\|_F \approx \|\cdot\|_*$
- RIP condition (random matrix)
- Error bound $\sqrt{rd/m}$

LASSO (noisy):

• Error bound $\sigma \sqrt{s \log n / m}$

Thanks!

