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JEl. sparse recovery

Vector recovery problem:
¢ ‘EO + ‘gz ~ ’Bl
» Error bound /slogn /m  [M* bound]

« Exact recovery m~slogn [Escaping Theorem]
Matrix recovery problem:

* - llo + 11 Ml = 11~
* RIP condition (random matrix)

« Error bound /rd/m

LASSO (noisy):
» Error bound g,/slogn/m




BUEEIE: Matrix Deviation Inequality
Can we replace the norm with general norm?

Theorem 9.1.1 (Matrix deviation inequality). Let A be an m X n matriz whose
rows A; are independent, isotropic and sub-gaussian random vectors in R™. Then
for any subset T' C R"™, we have

Esup || Az|, — vimle]s| < CK*(T).

xeT

Here ~(T) is the Gaussian complexity introduced in Section 7.6.2, and K =
max; || A;lly, -



General Matrix Deviation Inequality (with general norm):

Positive-homogeneous: f(ax) = af (x)
Sub-additive: f(x +y) < f(x) + f(¥)

Example: norm, f(x) =x -y, f(x) =supx -y

VES

Theorem 11.1.5 (General matrix deviation inequality). Let A be an m X n

Gaussian random matrix with‘i.z’.d. N(0,1) entries.

Let f : R™ — R be a positive-

homogeneous and subadditive function, and let b € R be such that

‘ f(z) < bllx|2 lfor all x € R". (11.3)

Then for any subset T' C R"™, we have

£ sup
z€eT

[F(Az) —E f(Aa:)” < Cby(T).

Here v(T') is the Gaussian complexity introduced in Section 7.6.2.



General Matrix Deviation Inequality (with general norm):

Theorem 11.1.5 (General matrix deviation inequality). Let A be an m X n
Gausstan random matrix wz’th‘z’.z’.d. N(0,1) entries.|Let f : R™ — R be a positive-
homogeneous and subadditive function, and let b € R be such that

‘ f(z) < bzl lfor all x € R". (11.3)
Then for any subset T' C R™, we have
Esup [f{Az) — E f(Aa:)” < Chy(T).
zeT

Here v(T') is the Gaussian complexity introduced in Section 7.6.2.

Remark 11.1.9. It is an open question if Theorem 11.1.5 holds for general sub-
gaussian matrices A.



Johnson-Lindenstrauss Lemma (general norm)

Exercise 11.2.2 (Johnson-Lindenstrauss Lemma for ¢; norm). ses# Specialize

the previous exercise to the ¢; norm. Thus, let X be a set of N points in R", let

A be an m x n Gaussian matrix with i.i.d. N(0, 1) entries, and let € € (0, 1).
Suppose that

m > C'(e)log N.
Show that with high probability the matrix @Q := \/7/2 - m~' A satisfies

(I=9o)flz—yl: < |Qx—Qulr < (X + o)z —yll2 forallz,yeX.

Chevet’s inequality (general norm)

Theorem 11.2.4 (General Chevet’s inequality). Let A be an m x n Gaussian
random matric with i.i.d. N(0,1) entries. Let T C R™ and S C R™ be arbitrary
bounded sets. Then

Esup |sup (Az,y) — w(S)|z|2| < Cy(T)rad(S).

zel ' yes

E sup (Ax,y) < CK |w(T)rad(S)+ w(S)rad(T)]

xeT,yeS




Dvoretzky-Milman’s Theorem

Theorem 11.3.3 (Dvoretzky-Milman’s theorem: Gaussian form). Let A be an
m x n Gaussian random matriz with i.i.d. N(0,1) entries, T C R"™ be a bounded
set, and let € € (0,1). Suppose

m < ce*d(T)

where d(T') s the stable dimension of T introduced in Section 7.6. Then with
probability at least 0.99, we have

(1—¢)B Cconv(AT) C (1+¢)B
where B is a Fuclidean ball with radius w(T).

1. Random Gaussian projection of cubes onto subspace m~n is close to round balls.
2. Convex hull of Gaussian cloud is approximately Euclidean ball /logn.



Dvoretzky-Milman’s Theorem (Comparison)

1. Phase transition:

m
- 3 ¢ >
diam(PT) < ) €/ 5, dam(T). ifm > d(T)

Part A: JL Lemma

Cw,(T), if m <d(T).

Proposition 9.3.2 (Additive Johnson-Lindenstrauss Lemma). Consider a set
X C R". Let A be an m x n matriz whose rows A; are independent, isotropic and

sub-gaussian random vectors in R™. Then, with high probability (say, 0.99), the
scaled matrix

1
= —A
Q T
satisfies
[z =yl =0 < |Qz = Qyllz < [z —ylla+d forallz,yecX
where
5 — CK?*w(X)
= NG

and K = max; || A4;]],-



Dvoretzky-Milman’s Theorem (Comparison)

1. Phase transition:

m
L . . >
diam(PT) < C - diam(7T"), if m > d(T)
Cw,(T), if m < d(T).

Part B: DM Theorem

Exercise 11.3.9 (Random projection in the Grassmanian). sese# Prove a ver-
sion of Dvoretzky-Milman’s theorem for the projection P onto a random m-
dimensional subspace in R". Under the same assumptions, the conclusion should

be that
(1—¢)B Cconv(PT)C (1+¢)B



Take-away Messages
General Matrix Deviation Inequality: extend the norm to the general norm.

DM Theorem: random project to a ball

@ RR{EM
Thanks!
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