高维概率

High-Dimensional Probability

四、应用: 随机图模型

@滕佳烨

• 切尔诺夫不等式

对称伯努利分布->霍弗丁不等式->Gaussian-like bound exp(-ct2)

中心极限定理:对称伯努利<->正态

伯努利分布->切尔诺夫不等式->Possian-like bound

当p比较小,用泊松近似二项分布更加紧!

bilibili 哔哩哔哩

• 切尔诺夫不等式

Theorem 2.3.1 (Chernoff's inequality). Let X_i be independent Bernoulli random variables with parameters p_i . Consider their sum $S_N = \sum_{i=1}^N X_i$ and denote its mean by $\mu = \mathbb{E} S_N$. Then, for any $t > \mu$, we have

$$\mathbb{P}\left\{S_N \ge t\right\} \le e^{-\mu} \left(\frac{e\mu}{t}\right)^t.$$

· 本章知识点总结(独立随机变量和的Concentration)

次高斯分布→次高斯模→霍弗丁不等式→exp(-ct²) 次指数分布→次指数模→伯恩斯坦不等式→exp(-ct) **非渐进、指数收敛**

模型背景 (无向图)

G(n,p):n个结点,每个节点间连接的概率为p

度(degree): 平均连接数, d = (n-1)p

Figure 2.2 A random graph from Erdös-Rényi model G(n, p) with n = 200 and p = 1/40.

结论一: 在稠密图(dense graph)是规则图(regular)

Proposition 2.4.1 (Dense graphs are almost regular). There is an absolute constant C such that the following holds. Consider a random graph $G \sim G(n,p)$ with expected degree satisfying $d \geq C \log n$. Then, with high probability (for example, 0.9), the following occurs: all vertices of G have degrees between 0.9d and 1.1d.

Hint:首先使用切尔诺夫不等式,任意一个结点大概率都有d个左右的连接,再使用union bound,将其拓展到所有节点中。

注意到最后一句中的all

结论二:稀疏图

Exercise 2.4.2 (Bounding the degrees of sparse graphs). \clubsuit Consider a random graph $G \sim G(n,p)$ with expected degrees $d = O(\log n)$. Show that with high probability (say, 0.9), all vertices of G have degrees $O(\log n)$.

Exercise 2.4.3 (Bounding the degrees of very sparse graphs). $\blacksquare \blacksquare$ Consider a random graph $G \sim G(n, p)$ with expected degrees d = O(1). Show that with high probability (say, 0.9), all vertices of G have degrees

$$O\left(\frac{\log n}{\log\log n}\right).$$

结论二:稀疏图(upper bound)

Exercise 2.4.2 (Bounding the degrees of sparse graphs). \clubsuit Consider a random graph $G \sim G(n,p)$ with expected degrees $d = O(\log n)$. Show that with high probability (say, 0.9), all vertices of G have degrees $O(\log n)$.

Exercise 2.4.3 (Bounding the degrees of very sparse graphs). $\blacksquare \blacksquare$ Consider a random graph $G \sim G(n, p)$ with expected degrees $\underline{d} = O(1)$. Show that with high probability (say, 0.9), all vertices of G have degrees

$$O\Big(\frac{\log n}{\log\log n}\Big).$$

结论三:稀疏图(lower bound)

Exercise 2.4.4 (Sparse graphs are not almost regular). $\blacksquare \blacksquare \blacksquare$ Consider a random graph $G \sim G(n, p)$ with expected degrees $d = o(\log n)$. Show that with high probability, (say, 0.9), G has a vertex with degree 010d1.

Exercise 2.4.5 (Very sparse graphs are far from being regular). $\blacksquare \blacksquare$ Consider a random graph $G \sim G(n,p)$ with expected degrees d = O(1). Show that with high probability, (say, 0.9), G has a vertex with degree

$$\Omega\Big(\frac{\log n}{\log\log n}\Big).$$

谢谢!

@滕佳烨